بررسی تاثیر پیرشدگی قیر بر خصوصیات مکانیکی مخلوطهای آسفالتی ساخته شده با مصالح سنگی سیلیسی و آهکی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری راه و ترابری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار گروه مهندسی عمران، دانشگاه زنجان، زنجان، ایران

3 استادیار گروه راه و ترابری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این تحقیق تاثیر جنس مصالح سنگی بر پیرشدگی قیر در مخلوط های آسفالتی مورد مطالعه قرار گرفته است. نمونه ­های آسفالتی ساخته شده با مصالح سنگی آهکی و سیلیسی، تحت شرایط پیرشدگی کوتاه مدت، بلند مدت 5 روزه و بلند مدت 7 روزه قرار گرفته و مشخصات مارشال، مقاومت کششی و حساسیت رطوبتی آنها ارزیابی شده و با یکدیگر و حالت کنترل بدون اعمال پیرشدگی مقایسه گردیده ­اند. نتایج نشان می ­دهد مخلوط های ساخته شده با مصالح سنگی آهکی استقامت مارشال، نسبت مارشال و مقاومت کششی بیشتر و حساسیت رطوبتی کمتری نسبت به مخلوط های ساخته شده با مصالح سنگی سیلیسی دارند و تفاوت در حساسیت رطوبتی دو نوع مخلوط در مخلوط های پیرشده بیشتر می­باشد. همچنین، نتایج بیانگر این است که پیرشدگی باعث افزایش استقامت مارشال، نسبت مارشال و مقاومت کششی در حالت خشک مخلوط ها می­ گردد و روانی مخلوط ها را کاهش می ­دهد، اما باعث افزایش حساسیت رطوبتی مخلوط ها می­ گردد. تاثیر پیرشدگی بر مقاومت کششی مخلوط ها بیشتر از آن بر خصوصیات مارشال می باشد. استقامت مارشال و مقاومت کششی بعد از اعمال پیرشدگی بلند مدت 7 روزه بر روی مخلوط های ساخته شده با مصالح سنگی آهکی، به ترتیب،  13 و 62% نسبت به مخلوط پیر نشده افزایش می­ یابد و این مقادیر برای مخلوط ساخته شده با مصالح سنگی سیلیسی، به ترتیب، 17 و 32% می باشد. تاثیر پیرشدگی بر مشخصات مارشال و حساسیت رطوبتی مخلوط های ساخته شده با مصالح سنگی بیشتر از مخلوط های با مصالح سنگی آهکی است، اما، تاثیر آن بر مقاومت کششی در حالت خشک در مخلوط های با مصالح سنگی آهکی بیشتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Asphalt Ageing on the Mechanical Properties of Asphalt Mixtures Made by Limestone and Siliceous Aggregates

نویسندگان [English]

  • Amir Hossein Beheshti 1
  • Hasan Taherkhani 2
  • Alireza Sarkar 3
  • parham hayati 3
1 Phd student, science and Research Branch, Islamic Azad University, Tehran, Iran
2 associate professor, civil engineering department, Unversity of Zanjan, Zanjan, Iran
3 Assistant professor, science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In this study the effect of aggregate source on the ageing of asphalt binder ageing in asphalt mixtures has been investigated. Limestone and siliceous aggregates have been used for making specimens with the same binder and aggregate gradation. The mixtures were tested after subjecting to short and long term ageing, and the properties of the mixtures after each ageing condition have been evaluated and compared.  Marshall Stability, flow and Marshall Quotient (MQ), indirect tensile strength (ITS) and moisture susceptibility have been investigated. Results reveal that the mixture made by limestone aggregates has higher Marshall Stability, Marshall Quotient, and indirect tensile strength than the mixture made by siliceous aggregates, while the mixture made by siliceous aggregates has higher moisture susceptibility. The difference between the moisture susceptibility of the mixtures is more after ageing. Results also show that ageing results in increase of Marshall Stability, Marshall Quotient, the ITS in dry condition, and decrease of Marshall flow and tensile strength ratio.  It was found that long term ageing condition of 7 days at 85°C, results in 13 and 62% improvement in Marshall stability and ITS, respectively, in the mixture made by limestone aggregates, while these values for the siliceous aggregates are 17 and 32%. The effect of ageing on the Marshall Properties and moisture susceptibility for the mixture made by siliceous aggregates is higher than that for the mixtures made by limestone aggregates. However, the effect of ageing on the ITS in dry condition is higher for the mixture made by limestone aggregates.

کلیدواژه‌ها [English]

  • asphalt concrete
  • ageing
  • limestone aggregates
  • siliceous aggregates
  • moisture damage
  • آیین نامه روسازی آسفالتی راه‌های ایران، 1390. نشریه شماره 234. معاونت برنامه‌ریزی و نظارت راهبردی رئیس جمهور.

 

- طاهرخانی، ح.، بیات، ح.، نوریان، ف. (1400) "بررسی ویژگی­های حجمی، استقامتی و خزشی بتن آسفالتی حاوی آسفالت بازیافتی و روغن موتور ضایعاتی" فصلنامه مهندسی حمل و نقل، دوره 2، شماره 3، ص. 585-561.

-Abo-Qudais, S. and Mulqi, M.W. (2005) “New Chemical Antistripping Additives for
Bituminous Mixtures”. Journal of ASTM International 2(8), pp. 87-97.

 

-Alwardany, M. D., Rad, F. Y., Castorena, C. and Kim, Y. R. (2017) “Evaluation of asphalt mixture laboratory long-term ageing methods for performance testing and prediction,” Road Materials and Pavement Design, vol. 18, no. 1, pp. 28–61, 2017.

 

-Ameri, M., Hesami, S. and Goli, H. (2013) “Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag”. Construction and Building Materials, Vol. 49, pp. 611-617.

 

-Azimi Alamdary, Y., Singh, S., & Baaj, H. (2019) “Laboratory simulation of the impact of solar radiation and moisture on long-term age conditioning of asphalt mixes” Road Materials and Pavement Design, 0(0), pp. 1–12. doi:10.1080/14680629.2019.1587496


-Azimi Alamdary, Y., Singh, S., & Baaj, H. (2021) “Effect of aggregates containing iron sulphide on asphalt ageing” Road Materials and Pavement Design, 22(3), pp. 623-638.

 

-Bagampadde, U. (2004). On investigation of stripping propensity of bituminous mixtures (Doctoral dissertation, Byggvetenskap).

 

-Baghaee Moghaddam, T., & Baaj, H. (2016) “The use of rejuvenating agents in production of recy-
cled hot mix asphalt: A systematic review” Construction and Building Materials, 114, pp. 805–816.
doi:10.1016/j.conbuildmat.2016.04.015.

 

-Barbieri, D. M., Hoff, I., Mørk, M. B. E.  (2019) “Innovative stabilization techniques for weak crushed rocks used in road unbound layers: A laboratory investigation” Transport. Geotech., 18 (2019), pp. 132-141.

 

-Bell, C. A.,  Wieder, A. J. and Fellin, M. J. (1994) “Laboratory aging of asphalt-aggregate mixtures: field validation,” Research Report SHRP-A-390, Oregon State University, Corvallis, OR, USA, 1994.

 

-Bessa, I. S., Branco, V. T., Soares, J. B., Neto, J. A. N. (2015) “Aggregate shape properties
and their influence on the behavior of hot-mix asphalt, Journal of. Materials in Civil Engineering.
(2015), https://doi.org/10.1061/(asce)mt.1943-5533.0001181.

 

-Brown, S. F. and Scholz,  T. V. (2000) “Development of laboratory protocols for the aging of asphalt mixtures,” in Proceedings of 2nd Eurasphalt and Eurobitume Congress, vol. 1, pp. 83–90, Barcelona, Spain, September 2000.

 

-Chang, X., Zhang, R., Xiao, Y., Chen, X., Zhang, X., Liu, G. (2020) “Mapping of publications
on asphalt pavement and bitumen materials: a bibliometric review”, Construction and
Building Materials (2020), https://doi.org/10.1016/j.conbuildmat.2019.117370.

 

-Chen, G.M. and Tan, Y.Q., (2007) “Asphalt mixture performance research
based on coarse aggregate surface texture” Journal of Highway and
Transportation Research and Development, 24 (2), pp. 8–12.

 

-Christensen, W. D., Bonaquist, R., and Jack, D. P. (2000) “Evaluation of
triaxial strength as a simple test for asphalt concrete rut resistance.”
Final Rep., Pennsylvania Dept. of Transportation.

-Christopher, W. J., Crawford, F. J., Edward, T. H., Adock, M., Delaney, E. P. Freer, H., (2011) “A
Manual for Design of Hot Mix Asphalt with Commentary” NCHRP Report No.
673, 2011.

 

-Craus, J., Ishai, I. and Sides, A., (1978) “Some physico-chemical aspects of the
effect and the role of the filler in bituminous paving mixtures” Journal of
the Association of Asphalt Paving Technologists, 47, pp. 558–588.

 

-Curtis, G.W., (1993) “Investigation of asphalt–aggregate interactions in
asphalt pavements” Abstracts of Papers of the American Chemical Society,
204 (34), pp. 1292–1298.

 

-Ensley, E.K., (1973) “A study of asphalt aggregate interactions and asphalt
molecular interactions by microcalorimetric methods: postulated
interaction mechanism” Journal of the Institute of Petroleum, 59, pp. 279–
289.


-Ensley, E.K. and Seholz, H.A., (1972) “A study of asphalt–aggregate
interactions by heat of immersion” Journal of the Institute of Petroleum,
58, pp. 95–101.

 

-Gao, J., Wang, H., Bu, Y., You, Z., Hasan, M.R.M., Irfan, M., (2018) ‟Effects of coarse
aggregate angularity on the microstructure of asphalt mixture”, Constr. Build.
Mater. (2018), https://doi.org/10.1016/j.conbuildmat.2018.06.170.

 

-Hashimoto, M., et al., (2011) “Effect of mineral filler characteristics
on asphalt mastic and mixture rutting potential” Transportation
Research Record: Journal of the Transportation Research Board, 2208,
pp. 33–39.

 

-Heitzman, M. (2007) “New Film Thickness Models for Iowa Hot Mix Asphalt”, Proc. 2007Mid-Contient Transp. Res. Symp. (2007) 14.

 

-Hesp, S. A. M., & Shurvell, H. F. (2010) “X-ray fluorescence detection of waste engine oil residue in asphalt and its effect on cracking in service” International Journal of Pavement Engineering, 11(6), pp. 541–553. doi:10.1080/10298436.2010.488729.

 

-Hicks, R. G. (1991). “Moisture damage in asphalt concrete” (No. 175). Transportation Research Board.

 

-Houston, W. N., Mirza, M. W., Zapata, C. E. and Raghavendra, S. (2018) “Environmental effects in pavement mix and structural design systems,” Part 1 of Contractor’s Final Report for NCHRP Project 9-23, Arizona State University, Phoenix, AZ, USA, 2005.

 

-Huang, B., Kingery, W. R. and Zhang, Z. (2004) “Laboratory study of fatigue characteristics of HMA mixtures containing RAP”, in International Symposium on Design and Construction of Long Lasting Asphalt Pavements, 2004, Auburn, Alabama, USA.

 

-Islam, M. R., Hossain, M. I., & Tarefder, R. A. (2015). “A study of asphalt aging using Indirect Tensile Strength test” Construction and Building Materials, 95, 218-223.

 

-Kim, Y.R., Little, D.N. and Song, I., (2003) “Effect of mineral fillers on fatigue
resistance and fundamental material characteristics: mechanistic
evaluation”. Transportation Research Record: Journal of the Transportation
Research Board, 1832, pp. 1–8.

 

-Lesueur, D. and Little, D.N., (1998) “Effect of hydrated lime on rheology,
fracture, and aging of bitumen” Transportation Research Record, 1661,
pp. 93–105.

 

-Li, P., Yi, K., Yu, H., Xiong, J., & Xu, R. (2021) “Effect of aggregate properties on long-term skid resistance of asphalt mixture” Journal of Materials in Civil Engineering, 33(1), 04020413.

 

-Liu, Y. and You, Z., (2011) “Discrete-element modeling: impacts of
aggregate sphericity, orientation, and angularity on creep stiffness of
idealized asphalt mixtures” Journal of Materials in Civil Engineering,
137, pp. 294–303.

 

-López-Montero, T., & Miró, R. (2016). “Differences in cracking resistance of asphalt mixtures due to ageing and moisture damage” Construction and Building Materials, 112, pp. 299-306.

 

-Mashaan, N. S., Ali, A. H., Koting, S., & Karim, M. R. (2013). Performance evaluation of crumb rubber modified stone mastic asphalt pavement in Malaysia. Advances in Materials Science and Engineering, 2013.

 

-Mouton, Yves. (2006) “Organic materials in civil engineering” UK: ISTE. doi: 10.1002/9780470612316.

 

-Von Quintus, H., Scherocman, J., Kennedy, T. and Hughes, C. S. (1988) “Asphalt aggregate mixture analysis system,” Final Report to NCHRP 09–06(1), National Research Council, Washington, DC, USA, 1988.

-Pasandín, A. R., & Pérez, I. (2014). “Effects of the asphalt penetration grade and the mineralogical composition on the asphalt-aggregate bond” Petroleum science and technology, 32(22), 2730-2737.

 

-Petersen, J. C. (2009) ‟A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships ”Washington, DC, USA: Transportation Research Board. ISSN 0097-8515.

 

-Pouranian, M.R., Haddock, J.E., (2019) “A new framework for understanding aggregate
structure in asphalt mixtures”, International Journal of Pavement Engineering (2019), https://doi.org/
10.1080/10298436.2019.1660340.

 

-Reed, J. (2010) “Evaluation of the Effects of Aging on Asphalt Rubber Pavements”, Ph.D. Dissertation, Arizona State University, Tempe, AZ, USA, 2010.

 

-Saghafi, M., Tabatabaee, N., Nazarian, S. (2019) “Performance evaluation of slurry seals containing reclaimed asphalt pavement” (No. 19-02071), (2019).

 

-Setiadji, B.H. 2005.  Use of Waste Materials for Pavement Construction in Indonesia. Journal of Institution of Engineers. Singapore. Volume.45, Issue 2.

 

-Sirin, O., Paul, D. K., & Kassem, E. (2018). “State of the art study on aging of asphalt mixtures and use of antioxidant additives” Advances in Civil Engineering, 2018.

 

-Tao, G., Xiao, Y., Yang, L., Cui, P., Kong, D. Z., Xue, Y. (2019) “Characteristics of steel slag filler and its influence on rheological properties of asphalt mortar”, Construction and
Building Materials (2019), https://doi.org/10.1016/j.conbuildmat.2018.12.174.

 

-Wang, F., Xiao, Y., Cui, P., Ma, T., Kuang, D. (2020) “Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures”, Construction
and Building Materials (2020), https://doi.org/10.1016/j.conbuildmat.2020.120220.

 

-White, G., & Magee, C. (2019). “Laboratory evaluation of asphalt containing recycled plastic as a bitumen extender and modifier”. Journal of Traffic and Transportation Engineering, 7(5), pp. 218-235.

 

-Xiao, Q.C., Qian, C.X. and Xie, J.G., (2004) “Experimental research on
modification of asphalt concrete performance and asphalt-aggregate
interface by coupling agent” Journal of Southeast University (Natural
Science Edition), 34 (4), pp. 485–489.

 

-Yan, X.L. and Liang, C.Y., (2001) “Study of the shear adhesiveness between
bitumen and rock” China Journal of Highway and Transport, 14 (4), pp.
25–27.

 

-You, Z. and Dai, Q., 2007a. Review of advances in micromechanical
modeling of aggregate–aggregate interactions in asphalt mixtures.
Canadian Journal of Civil Engineering, 34 (2), pp. 239–252.

 

-You, Z. and Dai, Q., (2007b) “Dynamic complex modulus predictions of
hot-mix asphalt using a micromechanical-based finite element model”
Canadian Journal of Civil Engineering, 34 (12), pp. 1519–1528.