بررسی تأثیر پودر سرباره کوره آهنگدازی بر عملکرد آسفالت حفاظتی اسلاری‌سیل

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، دانشگاه شمال، مازندران، آمل

2 کارشناس ارشد گرایش راه و ترابری، دانشکده مهندسی عمران، دانشگاه شمال، مازندران، آمل

3 دانشجوی دکتری گرایش راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم‌و‌صنعت ایران، تهران، ایران

چکیده

یکی از روش‌های مؤثر در تعمیر و نگهداری پیشگیرانه راه‌ها استفاده از آسفالت حفاظتی اسلاری‌سیل است. هدف این تحقیق بررسی به‌کارگیری پودر سرباره کوره آهنگدازی جایگزین فیلر معدنی مخلوط در طرح اختلاط اسلاری‌سیل جهت سنجش عملکرد آن است. در این رابطه، ابتدا مشخصات مصالح سنگی و پودر سرباره کوره آهن‌گدازی موردبررسی قرار گرفت. سپس به‌منظور ارزیابی عملکرد مخلوط اسلاری‌سیل، از 5 ترکیب مختلف حاوی صفر، 25، 50، 75 و 100 درصد فیلر سرباره کوره آهنگدازی جایگزین فیلر مخلوط استفاده گردید. سنجش نمونه‌ها به‌واسطه آزمایش‌های چسبندگی مرطوب، چرخ بارگذاری شده و سایش در شرایط مرطوب مطابق با دستورالعمل ASTM D3910 و ISSA A105 انجام شد. نتایج نشان داد که مخلوط‌های حاوی فیلر پودر سرباره کوره آهنگدازی، موجب بهبود عملکرد اسلاری‌سیل می‌شوند. همچنین در میان مخلوط‌ها، مخلوط حاوی 100 درصد سرباره نسبت به نمونه شاهد موجب افزایش چسبندگی در مدت‌زمان 30 و 60 دقیقه به ترتیب به میزان 25.0 و 3/33 درصد و کاهش قیر زدگی مخلوط به میزان 9/51 درصد گردید. این مخلوط نسبت به نمونه شاهد دارای 89/1 درصد قیر امولسیون بیشتر به‌منظور دستیابی به چسبندگی مناسب در زمان مشخص است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Effect of Blast-Furnace Slag Powder on Slurry Seal Surface Treatment Performance

نویسندگان [English]

  • Amir Izadi 1
  • sasan shaygan 2
  • Mahdi Zalnezhad 3
1 Assistant Professor, Faculty of Civil Engineering, Shomal University, Mazandaran, Amol
2 M.Sc. Highways and Transportation, Faculty of Civil Engineering, Shomal University, Mazandaran, Amol
3 PhD Candidate, Faculty of Civil Engineering, Iran University of Science and Technology, Tehran City, Iran
چکیده [English]

An effective method of preventive maintenance is the use of slurry seal surface treatment. The present research is aimed at investigating the use of blast-furnace slag powder as an alternative to mixed mineral filler in slurry seal mix for assessing its performance. In this respect, we began by exploring the properties of rock materials and blast-furnace slag powder. Next, seeking to evaluate the performance of the developed slurry seal treatment, five different mixes were examined; the mixes contained the blast-furnace slag, as a replacement for mixed mineral filler, at 0, 25, 50, 75, and 100%. Sample evaluation was conducted through wet cohesion test, loaded wheel test, and wet track-abrasion test according to ASTM D3910 and ISSA A105 standard codes. The results showed that the mixes containing the blast-furnace slag as filler tended to exhibit superior performance of the slurry seal. Moreover, among the examined samples, the mix containing the slag at 10.0% could improve the cohesion by 25.0 and 33.3% after 30 and 60 min, respectively, with the bleeding level decreased by 51.9%, as compared to the control sample. Compared to the control, this sample could achieve 1.89% higher bitumen emulsion, providing for better cohesion in an appropriate amount of time.

کلیدواژه‌ها [English]

  • Slurry seal
  • blast-furnace slag powder
  • wet cohesion test
  • abrasion resistance
  • displacement resistance
- Abedini, M., Hassani, A., Kaymanesh, M. R., Yousefi, A. A., & Abedini, H. (2020). Multiple stress creep and recovery behavior of SBR-modified bitumen emulsions. Journal of Testing and Evaluation, 48(4).
- Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of hazardous materials, 165(1-3), 300-305.
 
- Airey, G. D., Collop, A. C., & Thom, N. H. (2004). Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates. Paper presented at the Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA’04), South Africa.
 
- Apaza, F. R. A., Guimarães, A. C. R., Vivoni, A. M., & Schroder, R. (2021). Evaluation of the performance of iron ore waste as potential recycled aggregate for micro-surfacing type cold asphalt mixtures. Construction and Building Materials, 266, 121020.
 
- Arabani, M., & Azarhoosh, A. (2012). The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures. Construction and Building Materials, 35, 1-7.
 
- Arabani, M., Tahami, S. A., & Taghipoor, M. (2017). Laboratory investigation of hot mix asphalt containing waste materials. Road materials and pavement design, 18(3), 713-729.
 
- ASTM D3910. (2015). Standard Practice for Design, Testing, and Construction of Slurry Seal. In. West Conshohocken, PA: American Society of Testing and Materials.
 
- Bhargava, N., Siddagangaiah, A. K., & Ryntathiang, T. L. (2020). Reliability of Microsurfacing Mix Subjected to Variation in Aggregate Gradation. Transportation research record, 2674(11), 720-730.
 
- Bhargava, N., Siddagangaiah, A. K., & Ryntathiang, T. L. (2020). State of the art review on design and performance of microsurfacing. Road Materials and Pavement Design, 21(8), 2091-2125.
- Bista, S. (2020). Guidelines for Mix Design and Construction of Slurry Seal and Microsurfacing Pavement Preservation Treatments. University of Nevada, Reno.
 
- Brown, E. R., Kandhal, P. S., Roberts, F. L., Kim, Y. R., Lee, D. Y., & Kennedy, T. W. (2009). Hot Mix Asphalt Materials, Mixture Design and Construction: Third Edition: National Asphalt Pavement Association.
 
- Chandru, P., Karthikeyan, J., Sahu, A. K., Sharma, K., & Natarajan, C. (2021). Some durability characteristics of ternary blended SCC containing crushed stone and induction furnace slag as coarse aggregate. Construction and Building Materials, 270, 121483.
 
- Chen, M., Lin, J., & Wu, S. (2011). Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and Building Materials, 25(10), 3909-3914.
 
- Chen, S.-H., Lin, D.-F., Luo, H.-L., & Lin, Z.-Y. (2017). Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate. Construction and Building Materials, 157, 647-653. doi:https://doi.org/10.1016/j.conbuildmat.2017.09.136
 
- Chen, Z., Gong, Z., Jiao, Y., Wang, Y., Shi, K., & Wu, J. (2020). Moisture stability improvement of asphalt mixture considering the surface characteristics of steel slag coarse aggregate. Construction and Building Materials, 251, 118987.
 
- Choudhary, J., Kumar, B., & Gupta, A. (2020). Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and Building Materials, 234, 117271.
 
- de Matos, P. R., Oliveira, J. C., Medina, T. M., Magalhaes, D. C., Gleize, P. J., Schankoski, R. A., & Pilar, R. (2020). Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production. Construction and Building Materials, 262, 120102.
 
- Dulaimi, A., Shanbara, H. K., & Al-Rifaie, A. (2020). The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue. Construction and Building Materials, 250, 118808.
 
- Ellis, C., Zhao, B., Barnes, J., & Jones, N. (2004). Properties of GGBS-bitumen emulsion systems with recycled aggregates. Road Materials and Pavement Design, 5(3), 373-383.
 
- Esfahani, M. A., & Khatayi, A. (2020). Effect of type and quantity of emulsifier in bitumen polymer emulsion on microsurfacing performance. International Journal of Pavement Engineering, 1-15. doi:10.1080/10298436.2020.1784416
 
- Farooq, M. A., Sato, Y., Ayano, T., & Niitani, K. (2017). Experimental and numerical investigation of static and fatigue behavior of mortar with blast furnace slag sand as fine aggregates in air and water. Construction and Building Materials, 143, 429-443.
 
- Gransberg, D. D., Board, T. R., & Program, N. C. H. R. P. S. (2010). NCHRP Synthesis 411: Microsurfacing.
 
- Guo, Y., Xie, J., Zheng, W., & Li, J. (2018). Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Construction and Building Materials, 192, 194-201.
 
- Hesami, E., Ataollahi, A., & Sadeghi, V. (2020). Performance evaluation of microsurfacing with rubber powder. Journal of Thermoplastic Composite Materials, 0892705720930760.
 
- ISSA. (2017a). Test Method for Measurement of Excess Asphalt in Bituminous Mixtures by Use of a Loaded Wheel Tester and Sand Adhesion. In Technical Bulletin: International slurry surfacing association.
 
- ISSA. (2017b). Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes. In Technical Bulletin: International Slurry Surfacing Association.
 
- ISSA. (2017c). Test Method for Wet Track Abrasion of Slurry Surfacing Systems. In Technical Bulletin: International Slurry Surfacing Association.
 
- ISSA. (2017d). Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics. In Technical Bulletin: International Slurry Surfacing Association.
 
- ISSA. (2017e). Trial mix procedure for slurry seal design. In Technical Bulletin: International Slurry Surfacing Association.
 
- ISSA A105. (2020). Recommended Performance Guideline For Emulsified Asphalt Slurry Seal. In: International Slurry Surfacing Association.
 
- Izadi, A., Zalnezhad, M., Bozorgi Makerani, P., & Zalnezhad, H. (2020). Mix design and performance evaluation of coloured slurry seal mixture containing natural iron oxide red pigments. Road Materials and Pavement Design, 1-18. doi:10.1080/14680629.2020.1860803
 
- Keymanesh, M. R., Ziari, H., Zalnezhad, H., & Zalnezhad, M. (2020). Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials, 269, 121336.
 
- Kumar, R., & Ryntathiang, T. L. (2016). New laboratory mix methodology of microsurfacing and mix design. Transportation research procedia, 17, 488-497.
 
- Liao, M.-C. (2007). Small and large strain rheological and fatigue characterisation of bitumen-filler mastics. University of Nottingham.
 
- Melotti, R., Santagata, E., Bassani, M., Salvo, M., & Rizzo, S. (2013). A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Waste management, 33(9), 1906-1917.
 
- Mogawer, W. S., & Stuart, K. D. (1996). Effects of mineral fillers on properties of stone matrix asphalt mixtures. Transportation research record, 1530(1), 86-94.
-
 Muniandy, R., Aburkaba, E. E., Hamid, H. B., & Yunus, R. B. (2009). An initial investigation of the use of local industrial wastes and by-products as mineral fillers in stone mastic asphalt pavements. Journal of Engineering and Applied Sciences, 4(3), 54-63.
 
- Nasir, M., Johari, M. A. M., Maslehuddin, M., Yusuf, M. O., & Al-Harthi, M. A. (2020). Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Construction and Building Materials, 251, 118961.
 
- Nassar, A. I., Mohammed, M. K., Thom, N., & Parry, T. (2016). Mechanical, durability and microstructure properties of Cold Asphalt Emulsion Mixtures with different types of filler. Construction and Building Materials, 114, 352-363.
 
- Ozbakkaloglu, T., Gu, L., & Pour, A. F. (2016). Normal-and high-strength concretes incorporating air-cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior. Construction and Building Materials, 126, 138-146.
 
- Patel, C. P., & Bhavsar, J. K. (2016). Enhancement of concrete properties by replacing cement and fine aggregate with ceramic powder. Journal of civil engineering and environmental technology, 3(3).
 
- Pattanaik, M. L., Choudhary, R., Kumar, B., & Kumar, A. (2021). Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Materials and Pavement Design, 22(2), 268-292. doi:10.1080/14680629.2019.1620120
 
- Poursoltani, M., & Hesami, S. (2020). Performance evaluation of microsurfacing mixture containing reclaimed asphalt pavement. International Journal of Pavement Engineering, 21(12), 1491-1504.
 
- Puligilla, S., & Mondal, P. (2013). Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and Concrete Research, 43, 70-80.
 
- Robinson Jr, G. R., Menzie, W. D., & Hyun, H. (2004). Recycling of construction debris as aggregate in the Mid-Atlantic Region, USA. Resources, Conservation and Recycling, 42(3), 275-294.
 
- Rondón-Quintana, H. A., Ruge-Cárdenas, J. C., & Farias, M. M. d. (2019). Behavior of hot-mix asphalt containing blast furnace slag as aggregate: Evaluation by mass and volume substitution. Journal of Materials in Civil Engineering, 31(2), 04018364.
 
- Rondón-Quintana, H. A., Ruge-Cárdenas, J. C., Patiño-Sánchez, D. F., Vacca-Gamez, H. A., Reyes-Lizcano, F. A., & Muniz de Farias, M. (2018). Blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture. Journal of Materials in Civil Engineering, 30(10), 04018244.
 
- Ruíz-Ibarra, J. F., Rondón-Quintana, H. A., & Chaves-Pabón, S. B. (2020). Behavior of a warm mix asphalt containing a blast furnace slag. International Journal of Civil Engineering, 18(3), 325-334.
 
- Shafabakhsh, G., & Ahmadi, S. (2019). Investigating the Effects of Steel Slag and Different Tack Coats on the Shear Strength of Composite Pavement Layers. Quarterly Journal of Transportation Engineering, 11(2), 475-499. doi:10.22119/jte.2019.69459
 
- Song, W., Zhu, Z., Pu, S., Wan, Y., Huo, W., Song, S., . . . Hu, L. (2020). Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends. Construction and Building Materials, 259, 119814.
 
- Taylor, R. E. (2007). Surface interactions between bitumen and mineral fillers and their effects on the rheology of bitumen-filler mastics. University of Nottingham Nottingham.
 
- Valcuende, M., Benito, F., Parra, C., & Miñano, I. (2015). Shrinkage of self-compacting concrete made with blast furnace slag as fine aggregate. Construction and Building Materials, 76, 1-9.
 
- Wang, A., Shen, S., Li, X., & Song, B. (2019). Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation. Construction and Building Materials, 201, 303-313.
 
- Wang, G. C. (2016). Slag use in asphalt paving. In G. C. Wang (Ed.), The Utilization of Slag in Civil Infrastructure Construction (pp. 201-238): Woodhead Publishing.
 
- Wang, H., Al-Qadi, I. L., Faheem, A. F., Bahia, H. U., Yang, S.-H., & Reinke, G. H. (2011). Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential. Transportation research record, 2208(1), 33-39.
 
- Yang, H., Xia, J., Thompson, J. R., & Flower, R. J. (2017). Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste management, 63, 393-396.
 
- Zalnezhad, M., & Hesami, E. (2020). Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. Journal of Traffic and Transportation Engineering (English Edition), 7(2), 215-226. doi:https://doi.org/10.1016/j.jtte.2018.12.005
 
- Zhang, Z., Li, L., Ma, X., & Wang, H. (2016). Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Construction and Building Materials, 113, 237-245.
 
- Zhou, Z., Xu, Z., Masliyah, J. H., & Czarnecki, J. (1999). Coagulation of bitumen with fine silica in model systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 148(3), 199-211.
 
- Zulkati, A., Diew, W. Y., & Delai, D. S. (2012). Effects of fillers on properties of asphalt-concrete mixture. Journal of transportation engineering, 138(7), 902-910.
 
- Zulu, K., & Mukendi, K. K. (2018). An in-depth evaluation of micro-surfacing treatment. Civil Engineering Journal, 4(9), 2242-2251.