پارامترهای مقاومت برشی خاک مسلح شده با الیاف سرامیکی پوشش داده شده با نانوسیلیس و کائولن

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 استادیار، گروه عمران، واحد نجف‌ آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

3 استاد، گروه زمین شناسی، دانشگاه اصفهان، اصفهان، ایران

4 دانشیار، گروه مهندسی نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در این مقاله با استفاده از نتایج آزمایش برش مستقیم، تاثیر پارامترهای مختلفی بر روی پارامترهای مقاومت برشی خاک مسلح شده با الیاف سرامیکی پوشش داده با ذرات نانوسیلیس و کائولن بررسی شده است. اثر مقدار الیاف سرامیکی، طول الیاف و مقدار نانوسیلیس و کائولن و همچنین مقدار الیاف پوشش داده شده با نانوسیلیس و کائولن بر روی پارامترهای مقاومت برشی ماسه لا­ی­دار مسلح شده بررسی شده است. ساختار میکروسکوپی نمونه­ ها و برهم­کنش الیاف و ذرات نانوسیلیس، کائولن و خاک نیز با استفاده از عکس­ های میکروسکوپی بررسی شده است. نتایج نشان می ­دهد که پارامترهای مقاومت برشی نمونه­ ها با افزودن الیاف سرامیکی، نانو سیلیس و یا کائولن به خاک طبیعی افزایش یافته است. طول الیاف سرامیکی تأثیر مهمی بر پارامترهای مقاومت برشی نمونه­ های تقویت شده با الیاف نداشته است و در کل مقدار 5/0 درصد الیاف بعنوان مقدار بهینه الیاف شناخته شده است. نمونه­ های حاوی ذرات کائولن مقاومت برشی بیشتری نسبت به نمونه ­های حاوی ذرات نانوسیلیس برای یک مقدار ثابت افزودنی داشته است. پوشش الیاف با کائولن اثر بیشتری بر روی افزایش پارامترهای مقاومت برشی نمونه ­ها داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Shear Strength Parameters of Soil Reinforced with Ceramic Fibers Coated with Nano-Silica and Kaolin

نویسندگان [English]

  • Mehdi Eshaghzadeh 1
  • Meysam Bayat 2
  • Rassoul Ajalloeian 3
  • Sayyed Mahdi Hejazi 4
1 PhD student, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Assistant professor, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 Professor, Department of Geology, University of Isfahan, Isfahan, Iran
4 Associate professor, Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In this paper, the effect of various parameters on the shear strength parameters of soil reinforced with ceramic fibers coated with nano-silica and kaolin particles has been investigated using the results of direct shear tests. The effect of the ceramic fiber content, fiber length, the nano-silica and kaolin contents and the content of fibers coated with nano-silica and kaolin on the shear strength parameters of reinforced silty sand has been investigated. The microscopic structure of the samples and the interaction of nano-silica, kaolin and fibers have also been examined with Scanning Electron Microscope (SEM). The results show that the shear strength parameters of the samples increase by adding ceramic fiber, nano-silica or kaolin particles to the natural soil. The length of ceramic fibers does not have a significant effect on the shear strength parameters of fiber-reinforced specimens, and 0.5% fiber content was recognized as the optimal fiber content. The samples containing kaolin particles have a higher shear strength than those containing nano-silica particles for a constant content of additive. The coating of fibers with kaolin has a greater effect on increasing the shear strength parameters of the samples.

کلیدواژه‌ها [English]

  • Silty Sand
  • Ceramic Fibers
  • Nano-silica
  • Kaolin
  • Shear Strength Parameters
- Akbari HR, Sharafi H, Goodarzi AR (2021) Effect of polypropylene fiber inclusion in kaolin clay stabilized with lime and nano-zeolite considering temperatures of 20 and 40 °C. Bull Eng Geol Environ 80:1841–1855. doi: 10.1007/s10064-020-02028-x
 
- Al-Refeai T, Al-Suhaibani A (1998) Dynamic and static characterization of polypropylene fiber-reinforced dune sand. Geosynth Int 5:443–458. doi: 10.1680/gein.5.0132
 
- Alkoy S, Yanik H, Yapar B (2007) Fabrication of lead zirconate titanate ceramic fibers by gelation of sodium alginate. Ceram Int 33:389–394. doi: 10.1016/j.ceramint.2005.09.021
 
- Asgari MR, Baghebanzadeh Dezfuli A, Bayat M (2015) Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arab J Geosci 8:1439–1452. doi: 10.1007/s12517-013-1173-1
 
- Baji A, Mai Y-W (2017) Engineering Ceramic Fiber Nanostructures Through Polymer-Mediated Electrospinning. Springer, Cham, pp 3–30.
 
- Boz A, Sezer A (2018) Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Reg Sci Technol 151:359–366. doi: 10.1016/j.coldregions.2018.03.026
 
- Brabston, William N.  and PGM (1992) Soil reinforcement with adhesive-coated fibers. US Pat.
 
- Calabi Floody M, Theng BKG, Reyes P, Mora ML (2009) Natural nanoclays: applications and future trends – a Chilean perspective. Clay Miner 44:161–176. doi: 10.1180/claymin.2009.044.2.161
 
- Changizi F, Haddad A (2017) Improving the geotechnical properties of soft clay with nano-silica particles. Proc Inst Civ Eng Gr Improv 170:62–71. doi: 10.1680/jgrim.15.00026
 
- Clauss B, Schawaller D (2006) Modern Aspects of Ceramic Fiber Development. Adv Sci Technol 50:1–8. doi: 10.4028/www.scientific.net/ast.50.1
 
- Cui H, Jin Z, Bao X, et al (2018) Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Constr Build Mater 189:286–295. doi: 10.1016/j.conbuildmat.2018.08.181
 
- Dhand V, Mittal G, Rhee KY, et al (2015) A short review on basalt fiber reinforced polymer composites. Compos Part B Eng 73:166–180. doi: 10.1016/j.compositesb.2014.12.011
 
- Du H, Pang SD (2020) High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Constr Build Mater 264:. doi: 10.1016/j.conbuildmat.2020.120152
 
- Eldesouky HM, Morsy MM, Mansour MF (2016) Fiber-reinforced sand strength and dilation characteristics. Ain Shams Eng. J. 7:517–526
 
- Eshaghzadeh M, Bayat M, Ajalloeian R, Hejazi SM (2021) Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers. J Adhes Sci Technol 0:1–20. doi: 10.1080/01694243.2021.1898857
 
- EsmaeilpourShirvani N, TaghaviGhalesari A, Khaleghnejad Tabari M, Janalizadeh Choobbasti A (2019) Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transp Geotech 19:1–8. doi: 10.1016/j.trgeo.2019.01.004
 
- Faghih Khorasani F, Kabir MZ (2020) The effectiveness of rubber short fibers reinforcing on mechanical characterization of clay adobe elements under static loading. Eur J Environ Civ Eng. doi: 10.1080/19648189.2020.1751302
 
- Gonçalves JP, Tavares LM, Toledo Filho RD, Fairbairn EMR (2009) Performance evaluation of cement mortars modified with metakaolin or ground brick. Constr Build Mater 23:1971–1979. doi: 10.1016/j.conbuildmat.2008.08.027
 
- Hamidi A, Hooresfand M (2013) Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotext Geomembranes 36:1–9. doi: 10.1016/j.geotexmem.2012.10.005
 
- Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2012) A simple review of soil reinforcement by using natural and synthetic fibers. Constr Build Mater 30:100–116. doi: 10.1016/j.conbuildmat.2011.11.045
 
- Huang P, Lu G, Yan Q, Mao P (2019) Effect of ceramic and nylon fiber content on composite silica sol slurry properties and bending strength of investment casting shell. Materials (Basel) 12:. doi: 10.3390/ma12172788
 
- Iranpour B, haddad A (2016) The influence of nanomaterials on collapsible soil treatment. Eng Geol 205:40–53. doi: 10.1016/j.enggeo.2016.02.015
 
- Li L, Zang T, Xiao H, et al (2020) Experimental study of polypropylene fibre-reinforced clay soil mixed with municipal solid waste incineration bottom ash. Eur J Environ Civ Eng 1–17. doi: 10.1080/19648189.2020.1795726
 
- Liu J, Feng Q, Wang Y, et al (2017) The Effect of Polymer-Fiber Stabilization on the Unconfined Compressive Strength and Shear Strength of Sand. Adv Mater Sci Eng 2017:. doi: 10.1155/2017/2370763
 
- Lv X, Zhou H, Liu X, Song Y (2019) Experimental study on the effect of basalt fiber on the shear behavior of cemented sand. Environ Earth Sci 78:1–13. doi: 10.1007/s12665-019-8737-7
 
- Ma Q, Gao C (2018) Effect of Basalt Fiber on the Dynamic Mechanical Properties of Cement-Soil in SHPB Test. J Mater Civ Eng 30:04018185. doi: 10.1061/(asce)mt.1943-5533.0002386
 
- Ma Y, Zhu B, Tan M (2005) Properties of ceramic fiber reinforced cement composites. Cem Concr Res 35:296–300. doi: 10.1016/j.cemconres.2004.05.017
 
- Mirzababaei M, Arulrajah A, Haque A, et al (2018) Effect of fiber reinforcement on shear strength and void ratio of soft clay. Geosynth Int 25:471–480. doi: 10.1680/jgein.18.00023
 
- Plé O, Lê TNH (2012) Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotext Geomembranes 32:111–116. doi: 10.1016/j.geotexmem.2011.11.004
 
- Richaud E, Farcas F, Divet L, Paul Benneton J (2008) Accelerated ageing of polypropylene geotextiles, the effect of temperature, oxygen pressure and aqueous media on fibers-Methodological aspects. Geotext Geomembranes 26:71–81. doi: 10.1016/j.geotexmem.2007.01.004
 
- Saadat M, Bayat M (2019) Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomech Geoengin. doi: 10.1080/17486025.2019.1699668
 
- Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: A review. Cem Concr Compos 23:441–454. doi: 10.1016/S0958-9465(00)00092-5
 
- Sadek S, Najjar SS, Freiha F (2010) Shear Strength of Fiber-Reinforced Sands. J Geotech Geoenvironmental Eng 136:490–499. doi: 10.1061/(asce)gt.1943-5606.0000235
 
- Salehi M, Bayat M, Saadat M, Nasri M (2021) Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste. KSCE J Civ Eng 25:1974–1984. doi: 10.1007/s12205-021-0953-5
 
- Sameni A, Pourafshary P, Ghanbarzadeh M, Ayatollahi S (2015) Effect of nanoparticles on clay swelling and migration. Egypt J Pet 24:429–437. doi: 10.1016/j.ejpe.2015.10.006
 
- Sarli JM, Hadadi F, Bagheri RA (2020) Stabilizing Geotechnical Properties of Loess Soil by Mixing Recycled Polyester Fiber and Nano-SiO2. Geotech Geol Eng 38:1151–1163. doi: 10.1007/s10706-019-01078-7
 
- Shafiq N, Nuruddin MF, Khan SU, Ayub T (2015) Calcined kaolin as cement replacing material and its use in high strength concrete. Constr Build Mater 81:313–323. doi: 10.1016/j.conbuildmat.2015.02.050
 
- Sharma R (2018) Laboratory study on sustainable use of cement–fly ash–polypropylene fiber-stabilized dredged material. Environ Dev Sustain 20:2139–2159. doi: 10.1007/s10668-017-9982-0
 
- Siddique S, Shrivastava S, Chaudhary S (2019) Influence of ceramic waste on the fresh properties and compressive strength of concrete. Eur J Environ Civ Eng 23:212–225. doi: 10.1080/19648189.2016.1275985
 
- Su H, Xu J (2013) Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load. Constr Build Mater 45:306–313. doi: 10.1016/j.conbuildmat.2013.04.008
 
- Su H, Xu J, Ren W (2014) Mechanical properties of ceramic fiber-reinforced concrete under quasi-static and dynamic compression. Mater Des 57:426–434. doi: 10.1016/j.matdes.2013.12.061
 
- Tomar A, Sharma T, Singh S (2019) Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Mater Today Proc 26:3449–3457. doi: 10.1016/j.matpr.2019.12.239
 
- Wan J, Wu S, Xiao Y, et al (2016) Characteristics of ceramic fiber modified asphalt mortar. Materials (Basel) 9:788. doi: 10.3390/ma9090788
 
- Wong LS, Hashim R, Ali F (2013) Improved strength and reduced permeability of stabilized peat: Focus on application of kaolin as a pozzolanic additive. Constr Build Mater 40:783–792. doi: 10.1016/j.conbuildmat.2012.11.065
 
- Zidi Z, Ltifi M, Ayadi Z Ben, et al (2020) Effect of nano-ZnO on mechanical and thermal properties of geopolymer. J Asian Ceram Soc 8:1–9. doi: 10.1080/21870764.2019.1693682