یک مدل ریاضی برای بهینه سازی زنجیره تامین گاز مایع با درنظر گرفتن نفتکش های میانی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشکده مهندسی صنایع، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران

2 دانشیار گروه مهندسی صنایع، دانشگاه آزاد اسلانی، واحد فیروزکوه، فیروزکوه، ایران

چکیده

تأمین انرژی در دنیای امروزه از راه ها و مواد مختلفی صورت می‌پذیرد که در این میان گاز طبیعی به سرعت در حال به دست آوردن نقش برجسته به عنوان یک منبع انرژی در سراسر جهان است. استفاده از حمل و نقل دریایی و تعیین مسیر بهینه کشتی-های باربری از متداول‌ترین روش‌های حمل و نقل مواد در زنجیره‌های تامین سوخت‌های فسیلی از جمله گاز محسوب می‌گردد. در این پژوهش یک مدل ریاضی زنجیره تامینی سه‌ سطحی شامل سطوح پورت مبدا، نفتکش های میانی و پورت مقصد طراحی شده است. به منظور طراحی مسیرهای بهینه در یک زنجیره تامین گاز مایع، یک سیستم برنامه‌ریزی حمل ونقل با در نظرگرفتن نفتکش‌های میانی برای حداکثر کردن کارایی زنجیره درنظر گرفته شد . بدین منظور چارچوب بهینه‌ای برای حمل و نقل گاز موردنیاز در محل‌های مصرف از طریق ناوگان حمل و نقل دریایی ارائه خواهد شد . هدف یافتن مقدار بهینه گاز انتقالی به نفتکش ها و پورت مقصد می باشد تا علاوه بر تامین تقاضا هزینه های انبارش مینیمم گردد .
با توجه به سخت بودن حل مدل ریاضی ، الگوریتم‌های فرا ابتکاری شبیه‌سازی تبرید تدریجی و تکامل تفاضلی جهت حل مدل ارائه شده اند . سپس جهت کارایی الگوریتم های پیشنهادی، مساله را در سایز کوچک با جواب های نرم افزار GAMS مقایسه کردیم سپس در سایز بزرگ به مقایسه دو الگوریتم پرداخته شد و مشاهده شد که الگوریتم تکامل تفاضلی جواب های بهتری در زمان معقولی به می دهد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A mathematical model for liquid natural gas supply chain optimization with consideration of middle tankers.

نویسندگان [English]

  • Alireza Rashidi Komaijani 1
  • Zahra Tavakoli 2
1 MSc. Grad., Colleage of Industrial Engineering, South Tehran Branch, , Islamic Azad University, Tehran, Iran
2 Associate Professor, College of Industrial Engineering, Firoozkooh Brach, , Islamic Azad University, Firoozkooh, Iran
چکیده [English]

Energy plays an important role in production and service systems. Among energies, in today’s world, natural gas has become as one of the effective ones. The optimal relation between different echelons of chains and goods transfers is among important challenges of supply chains. Maritime transportation and cargo ships routing is one of the common methods for freight transportation in fossil fuels supply chain such as gas. In this regard, a mathematical model is presented for a three-echelon supply chain consisting of origin and destination of intermediate tankers. In order to design the optimum routes in a LNG supply chain, a transportation system is considered with intermediate tankers Also, in this model the optimal values of transported gases to tankers and destinations are determined so as to minimize storage cost while satisfying demands.
Since the proposed model is NP-hard, Simulated Annealing and Differential Evolution algorithms are employed to solve the model. To demonstrate the efficiency of the proposed algorithms, the results are compared with the results of GAMS software for small-size problems. Then, the two meta-heuristics are compared for large-sized problems. The results show that DE obtains better solution in reasonable times.

کلیدواژه‌ها [English]

  • Liquid Natural Gas Supply Chain
  • Middle tankers
  • routing
  • Meta Heuristic algorithms
-Abadie, L. M. and Chamorro, J. M. (2009) "Monte Carlo valuation of natural gas investments", Review of Financial Economics, Vol.18, No.1, pp.10-22.
-Agra, A., Christiansen, M., Delgado, A. and Hvattum, L. M. (2015) "A maritime inventory routing problem with stochastic sailing and port times", Computers & Operations Research, Vol. 61, pp. 18-30.
-Andersson, H. Marielle Christiansen, M. and Kjetil Fagerholt, K. "Transportation planning and inventory management in the LNG supply chain". Energy, natural resources and environmental economics. Springer Berlin Heidelberg, 2010. pp.427-439..
-Arteconi, A. and Polonara, F. (2013) "LNG as vehicle fuel and the problem of supply: The Italian case study”, Energy Policy, Vol. 62, pp.503-512.
-Berle, Ø., Norstad, I. and Asbjørnslett, B. E. (2013) "Optimization, risk assessment and resilience in LNG transportation systems", Supply Chain Management: An International Journal, Vol.18 , No. 3, pp.253-264.
-Bergey, P. K. and Ragsdale, C. (2005) "Modified differential evolution: a greedy random strategy for genetic recombination", Omega Journal (Elsevier), Vol. 33, No.3, pp.255-265.
-Bittante, A., Mikolajková, M., Saxe'n, H. and Waller, J. (2017) "Optimization of LNG and natural gas supply chains–two models", Proceedings of Automation Days, pp.23-24.
-Christiansen, M., Fagerholt, K. and Ronen, D. (2004) "Ship routing and scheduling: Status and perspectives", Transportation Science, Vol.38, No.1, pp.1-18.
-Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D. (2013) "Ship routing and scheduling in the new millennium", European Journal of Operational Research, Vol.228, No.3, pp.467-483.
-Durrer, E. J. and Slater, G. E. (1977) "Optimization of petroleum and natural gas production—a survey", Management Science, Vol. 24, No.1, pp.35-43.
-Elia, J. A., Li, J. and Floudas, C. A. (2015) "Strategic planning optimization for natural gas to liquid transportation fuel (GTL) systems", Computers & Chemical Engineering, Vol.72, pp.109-125.
-Fodstad, M., Uggen, K. T., Rømo, F., Lium, A. G., Stremersch, G. and Hecq, S. (2010) "LNGScheduler: a rich model for coordinating vessel routing, inventories and trade in the liquefied natural gas supply chain", The Journak of Energy Markets, Vol.3, No. 4, p.31.
-Geman, H. (2005) "Commodities and commodity derivatives”, Modeling and Pricing for Agriculturals, Metals and Energy, Chichester (Grande-Bretagne) ": Wiley Finance.
-Grønhaug, R. and Christiansen, M. (2009)" Supply chain optimization for the liquefied natural gas business”, In Innovations in Distribution Logistics . Springer Berlin Heidelberg. pp. 195-218.
-Grønhaug, R., Christiansen, M., Desaulniers, G. and Desrosiers, J. (2010) "A branch-and-price method for a liquefied natural gas inventory Routing problem", Transportation Science, Vol. 44, No.3, pp.400-415.
-Halvorsen-Weare, E. E. and Fagerholt, K. (2013) "Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints", Annals of Operations Research, pp.1-20.
-Jokinen, R., Pettersson, F. and Saxén, H. (2015) "An MILP model for optimization of a small-scale LNG supply chain along a coastline", Applied Energy, Vol.138, No. 423-431.
-Kaplan, M., Wentworth, R. C. and Hischier, R. J. (1972) "Simulation and optimization of LNG shipping systems",Vol.72, pp.45-64.
-Kim, J., Seo, Y. and Chang, D. (2016) " Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction", Applied Energy, Vol.182, pp.154-163.
-Koenigsberg, E. and Lam, R. C. (1976) "Cyclic queue models of fleet operations", Operations Research, Vol. 24, No. 3, pp.516-529.
-Koenigsberg, E. and Meyers, D. A. (1980) "An interacting cyclic queue model of fleet operations", Logistics and Transportation Review, Vol.16, No.1, pp.59-71.
-Lai, G., Wang, M. X., Kekre, S., Scheller-Wolf, A. and Secomandi, N. (2010) "Valuation of the Real Option to Store Liquefied Natural Gas at a Regasification Terminal", Tepper School of Business.
-Mohammadi, M., Jula, P. and Tavakkoli-Moghaddam, R. (2017). "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty", European Journal of Operational Research, Vol.257, No.3, pp.792-809.
-Norstad, I., Fagerholt, K. and Laporte, G. (2011) “Tramp ship routing and scheduling with speed optimization”, Transportation Research Part C: Emerging Technologies, Vol. 19, No. 5, pp.853-865.
-Özelkan, E. C., D’Ambrosio, A. and Teng, S. G. (2008) “Optimizing liquefied natural gas terminal design for effective supply-chain operations”, International Journal of Production Economics, Vol. 111, No. 2, pp.529-542.
-Rodríguez, R. Y. (2008)  “Real option valuation of free destination in long-term liquefied natural gas supplies”,  Energy Economics, Vol. 30, No. 4, pp. 1909-1932.
-Ronen, D. (1983) “Cargo ships routing and scheduling: Survey of models and problems”, European Journal of Operational Research, Vol. 12, No. 2, pp.119-126.
-Ronen, D. (1993) “Ship scheduling: The last decade, European Journal of Operational Research, Vol. 71, No.3, pp.325-333.
-Shahidehpour, M. and Marwali, M. (2012) “Maintenance scheduling in restructured power systems, Springer Science & Business Media.
-Li, Z. (2005) "Natural gas for generation: a solution or a problem?”, IEEE Power and Energy Magazine, Vol. 3, No. 4, pp.16-21.
-Shao, Y., Furman, K. C., Goel, V. and Hoda, S. (2015) "A hybrid heuristic strategy for liquefied natural gas inventory routing. Transportation" Research Part C: Emerging Technologies, Vol. 53, pp.151-171.
-Simchi-Levi, D., Simchi-Levi, E. and Kaminsky, P. (1999) "Designing and managing the supply chain: Concepts, strategies and cases", New York: McGraw-Hill.
-Stålhane, M., Rakke, J. G., Moe, C. R., Andersson, H., Christiansen, M. and Fagerholt, K. (2012) "A construction and improvement heuristic for a liquefied natural gas inventory routing problem", Computers & Industrial Engineering, Vol. 62, No.1, pp.245-255.
-Tusiani, M. D. and Shearer, G. (2007) "LNG: a nontechnical guide", PennWell Books.
-Varadharajan, T. K. and Rajendran, C. (2005) “A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs". European Journal of Operational Research, Vol.167, No.3, pp. 772-795.
-Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B. and Mohammadi, M. (2016) "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty", Transportation Research Part E: Logistics and Transportation Review, Vol.89, pp.182-214.