ارائه مدل بهینه‌سازی استوار دومرحله‌ای برای برنامه‌ریزی یکپارچه مسیریابی-نت هواپیما و برنامه سفر خدمه تحت ریسک اختلال در پروازها

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار، موسسه عالی آموزش و پژوهش مدیریت و برنامه ریزی، تهران، ایران

چکیده

پس از طراحی شبکه و برنامه­ زمانی پروازها، مسائل مسیریابی و نگهداری­وتعمیرات (نت) هواپیما و همچنین زمانبندی خدمه پرواز، از جملات تصمیمات مهم و تاثیرگذار بر هزینه­های شرکت­های هواپیمایی است. در تصمیم­گیری پیرامون هریک از این مسائل، قیود و محدودیت­های عملیاتی و قوانین و مقررات مشخصی حاکم است که باید  ارضاء  گردند. در صورت یکپارچه­سازی این تصمیمات و یافتن پاسخ بهینه آن، کاهش قابل توجه­ای در هزینه خطوط هوایی رخ می­دهد. در این پژوهش، با فرض آنکه یک شرکت هواپیمایی طراحی برنامه­ زمانی پروازها را در سطح استراتژیک انجام داده است، به نحوه اجرای بهینه این برنامه پرداخته می­شود؛ برای این منظور، یکپارچه‌سازی بهینه تصمیات مسیریابی-نت هواپیما و برنامه سفر خدمه(تیم پرواز) مورد توجه قرار گرفته است.  مسئله مورد نظر برای یک شرکت هواپیمایی، با تنوع پایگاه نت و خدمه، با هدف کمینه کردن مجموع هزینه­ها حل می‌شود. یکی از مهمترین چالش‌ها در حل این مسئله، اختلالات محتمل در برنامه اولیه است که موجب می‌شود برنامه ریزی هواپیما و خدمه، در عمل کارایی مناسبی نداشته باشد. بنابراین، در این تحقیق، اختلالات ممکن در برنامه اولیه را به صورت چندین  سناریو مختلف تعریف کرده و با استفاده از رویکرد بهینه‌سازی استوار سناریومحور دومرحله‌ای، یک پاسخ استوار برای مسئله یکپارچه‌سازی تصمیمات مسیریابی-نت هواپیما و برنامه سفر خدمه، ارائه می‌دهیم. در مدل استوار پیشنهادی، علاوه بر آنکه یکپارچه‌سازی تصمیمات صورت می‌پذیرد، متغیرهای تعدیل پذیر مرحله دوم از جمله تصمیم در خصوص لغو پرواز در اختلال نیز دیده می‌شود تا مدل با سناریوهای مختلف اختلال، تطبیق‌پذیر باشد. نتایج عددی اجرای مدل پیشنهادی تصدیق‌کننده کارپردپذیری مدل پیشنهادی برای ارائه یک پاسخ یکپارچه و استوار برای مسئله مورد نظر تحقیق است.

کلیدواژه‌ها


عنوان مقاله [English]

Presentation of a Robust Two-Step Optimization Model for Integrated Planning of Aircraft Net Routing and Crew Routing Under the Risk of Flight Disruption

نویسندگان [English]

  • Khalil-Allah Memarzadeh 1
  • Mohammad Fallah 2
  • Hamed Kazemipoor 3
  • babak Farhang Moghaddam 4
1 Ph.D. student, Department of Industries, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Associate Professor, Department of Industries, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 Assistant professor, Department of Industries, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 Associate Professor, Higher Institute of Management and Planning Education and Research, Tehran, Iran
چکیده [English]

After network and flight schedule design, routing and aircraft maintenance and repair issues as well as aircrew planning are among the major decisions that affect airline costs. When making decisions on each of these issues, there are specific operational restrictions and rules and regulations that must be followed. If these decisions are integrated and the optimal response is found, there will be a significant reduction in airline cost. In this research, assuming that an airline has designed the flight program at a strategic level, how to optimally implement this program is discussed; to this end, the optimal integration of aircraft routing decisions and the crew's movement plan (flight team) was considered. The desired problem for an airline is solved with net base and crew diversity, with the goal of minimizing total costs. One of the biggest challenges in solving this problem is the possible disruption of the original plan, which makes aircraft and crew planning ineffective in practice. Therefore, in this research, we define the possible disturbances in the initial plan as several different scenarios and by using the two-step robust scenario-oriented optimization approach, we provide a robust answer to the problem of integrating the decisions of aircraft network routing. And the crew's travel plan. In the proposed stable model, in addition to the decision integration, the adjustable variables of the second stage, including the decision to cancel the flight in the event of a disturbance, are also seen so that the model is adaptable to different disturbance scenarios. . The numerical results of the implementation of the proposed model confirm the applicability of the proposed model to provide an integrated and stable answer to the research problem.

کلیدواژه‌ها [English]

  • Flight planning
  • aircraft routing network
  • crew planning
  • integrated decision making
  • stable scenario-based optimization
جلیلی، مجید، منطقی، منوچهر. (1397). تحلیل پیش بینی تقاضای مسافر و بار در صنعت هوایی ایران. فصلنامه مهندسی حمل و نقل، 101-75.
 
رشیدی کمیجان, علیرضا, گردانی, امین. (1398). مدل ریاضی یکپارچه مسیریابی هواپیماها و زمانبندی خدمه برای خطوط هوایی با تنوع ناوگان و هاب تعمیرات. مطالعات مدیریت صنعتی .
 
میرابی، محمد، غیاثوند محمدخانی، هانیه، توکلی مقدم، رضا. (1398). مدل‌سازی ریاضی و حل مساله مکان‌یابی- تخصیص هاب در فرودگاه های ایران. فصلنامه مهندسی حمل و نقل.
 
Abdelghany, A., & Abdelghany, K. (2018). Airline Network Planning and Scheduling: John Wiley & Sons.
 
Ahmed, M. B., Ghroubi, W., Haouari, M., & Sherali, (2017). A hybrid optimization-simulation approach for robust weekly aircraft routing and retiming. 84, 1-20.
 
Ahmed, M. B., Mansour, F. Z., & Haouari, M. (2018). Robust integrated maintenance aircraft routing and crew pairing. Journal of Air Transport Management, 73, 15-31.
 
Ahmed, M. B., Hryhoryeva, M., Hvattum, L. M., & Haouari, M. (2022). A matheuristic for the robust integrated airline fleet assignment, aircraft routing, and crew pairing problem. Computers & Operations Research, 137, 105551.
 
Al-Thani, N. A., Ahmed, M. B., & Haouari, M. (2016). A model and optimization-based heuristic for the operational aircraft maintenance routing problem. Transportation Research Part C: Emerging Technologies, 72, 29-44.
 
Antunes, D., Vaze, V., & Antunes, A. P. (2019). A Robust Pairing Model for Airline Crew Scheduling. Transportation Science, 53(6), 1751-1771.
 
Barnhart, C., Belobaba, P., & Odoni, A. R. (2003). Applications of operations research in the air transport industry. Transportation Science, 37(4), 368-391.
 
Barnhart, C., Cohn, A. M., Johnson, E. L., Klabjan, D., Nemhauser, G. L., & Vance, P. H. (2003). Airline crew scheduling. In Handbook of transportation science (pp. 517-560): Springer.
 
Barnhart, C., Farahat, A., & Lohatepanont, M. (2009). Airline fleet assignment with enhanced revenue modeling. Operations research, 57(1), 231-244.
 
Başdere, M., & Bilge, Ü. (2014). Operational aircraft maintenance routing problem with remaining time consideration. European Journal of Operational Research, 235(1), 315-328.
 
Bazargan, M. (2016). Airline operations and scheduling: Routledge.
Bulbul, K. G., & Kasimbeyli, R. (2021). Augmented Lagrangian based hybrid subgradient method for solving aircraft maintenance routing problem. Computers & Operations Research, 132, 105294.
 
Cacchiani, V., & Salazar-González, J.-J. (2013). A heuristic approach for an integrated fleet-assignment, aircraft-routing and crew-pairing problem. Electronic Notes in Discrete Mathematics, 41, 391-398.
 
Cacchiani, V., & Salazar-González, J.-J. (2016). Optimal solutions to a real-world integrated airline scheduling problem. Transportation science, 51(1), 250-268.
 
Cacchiani, V., & Salazar-González, J.-J. (2019). Heuristic approaches for flight retiming in an integrated airline scheduling problem of a regional carrier. Omega.
 
Cordeau, J.-F., Stojković, G., Soumis, F., & Desrosiers, J. (2001). Benders decomposition for simultaneous aircraft routing and crew scheduling. Transportation Science, 35(4), 375-388.
 
Deng, Q., & Santos, B. F. (2022). Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization. European Journal of Operational Research, 299(3), 814-833.
 
Díaz-Ramírez, J., Huertas, J. I., & Trigos, F. (2014). Aircraft maintenance, routing, and crew scheduling planning for airlines with a single fleet and a single maintenance and crew base. Computers & Industrial Engineering, 75, 68-78.
 
Dück, V. (2010). Increasing stability of aircraft and crew schedules. Framework(July), 1-157.
 
Eltoukhy, A., Wang, Z. X., Chan, F. T. S., & Chung, S. H. (2018). Joint optimization using a leader–follower Stackelberg game for coordinated configuration of stochastic operational aircraft maintenance routing and maintenance staffing. Computers & Industrial Engineering, 125, 46-68.
 
Eltoukhy, A. E., Chan, F. T., & Chung, S. H. (2017). Airline schedule planning: a review and future directions. Industrial Management & Data Systems, 117(6), 1201-1243.
 
Eltoukhy, A. E., Chan, F. T., Chung, S. H., Niu, B. J. C., & Engineering, I. (2018). A model with a solution algorithm for the operational aircraft maintenance routing problem. 120, 346-359.
 
Etschmaier, M. M., & Mathaisel, D. F. (1985). Airline scheduling: An overview. Transportation Science, 19(2), 127-138.
ion Science, 43(1), 2-16. doi:10.1287/trsc.1080.0257
 
Gopalan, R., & Talluri, K. T. (1998). The aircraft maintenance routing problem. Operations research, 46(2), 260-271.
 
Haouari, M., Zeghal Mansour, F., & Sherali, H. D. (2019). A new compact formulation for the daily crew pairing problem. Transportation Science, 53(3), 811-828.
 
Kasirzadeh, A., Saddoune, M., & Soumis, F. (2017). Airline crew scheduling: models, algorithms, and data sets. EURO Journal on Transportation and Logistics, 6(2), 111-137.
 
Kowalski, M., Izdebski, M., Żak, J., Gołda, P., & Manerowski, J. (2021). Planning and management of aircraft maintenance using a genetic algorithm. Eksploatacja i Niezawodność, 23(1).
 
Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research, 43(2), 264-281.
 
Papadakos, N. (2009). Integrated airline scheduling. Computers & Operations Research, 36(1), 176-195.
 
Parmentier, A., & Meunier, F. (2020). Aircraft routing and crew pairing: Updated algorithms at Air France. Omega, 93, 102073.
 
Rashidi Komijan, A., Tavakkoli-Moghaddam, R., & Dalil, S. A. (2021). A mathematical model for an integrated airline fleet assignment and crew scheduling problem solved by vibration damping optimization. Scientia Iranica, 28(2), 970-984.
 
Ruan, J., Wang, Z., Chan, F. T., Patnaik, S., & Tiwari, M. K. J. E. S. w. A. (2021). A reinforcement learning-based algorithm for the aircraft maintenance routing problem. 169, 114399.
 
Temucin, T., Tuzkaya, G., & Vayvay, O. (2021). Aircraft Maintenance Routing Problem–A Literature Survey. Promet-Traffic&Transportation, 33(4), 491-503.
 
Sa, C. A. A., Santos, B. F., & Clarke, J.-P. B. (2019). Portfolio-based airline fleet planning under stochastic demand. Omega, 102101.
 
Safaei, N., & Jardine, A. K. (2018). Aircraft routing with generalized maintenance constraints. Omega, 80, 111-122.
 
Safaei, N., & Jardine, A. K. S. (2018). Aircraft routing with generalized maintenance constraints. Omega, 80, 111-122.
 
Salazar-González, J.-J. (2014). Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier. Omega, 43, 71-82.
 
Salehi, F., Mahootchi, M., & Husseini, S. M. M. (2017). Developing a robust stochastic model for designing a blood supply chain network in a crisis: A possible earthquake in Tehran. Annals of Operations Research, 1-25.
 
Sanchez, D. T., Boyacı, B., & Zografos, K. G. (2020). An optimisation framework for airline fleet maintenance scheduling with tail assignment considerations. Transportation Research Part B: Methodological, 133, 142-164.
 
Sandhu, R., & Klabjan, D. (2007). Integrated airline fleeting and crew-pairing decisions. Operations research, 55(3), 439-456.
 
Sarac, A., Batta, R., & Rump, C. M. (2006). A branch-and-price approach for operational aircraft maintenance routing. European Journal of Operational Research, 175(3), 1850-1869.
 
Schaefer, A. J., Johnson, E. L., Kleywegt, A. J., & Nemhauser, G. L. (2005). Airline crew scheduling under uncertainty. Transportation Science, 39(3), 340-348.
 
Shao, S., Sherali, H. D., & Haouari, M. (2015). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, and crew pairing problem. Transportation science, 51(1), 233-249.
 
Shao, S., Sherali, H. D., & Haouari, M. (2017). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, and crew pairing problem. Transportation Science, 51(1), 233-249.
Souai, N., & Teghem, J. (2009). Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. European Journal of Operational Research, 199(3), 674-683.
 
Talluri, K. T. (1998). The four-day aircraft maintenance routing problem. Transportation Science, 32(1), 43-53.
 
Weide, O., Ryan, D., & Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing and crew scheduling. Computers & Operations Research, 37(5), 833-844.
 
Wen, X., Ma, H.-L., Chung, S.-H., Khan, W. A. J. T. R. P. E. L., & Review, T. (2020). Robust airline crew scheduling with flight flying time variability. 144, 102132.
 
Yu, C.-S., & Li, H.-L. (2000). A robust optimization model for stochastic logistic problems. International Journal of Production Economics, 64(1-3), 385-397.
 
Zhang, X., & Mahadevan, S. (2017). Aircraft re-routing optimization and performance assessment under uncertainty. Decision support systems
Gao, C., Johnson, E., & Smith, B. (2009). Integrated Airline Fleet and Crew Robust Planning. Transportat