برآورد ایمنی نواحی ترافیکی با استفاده از روش EB و مدل‌های کلان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 پژوهشگاه حمل و نقل طراحان پارسه، تهران، ایران

2 دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

3 دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

4 دانشکده عمران و محیط زیست، دانشگاه صنعتی امیرکبیر

چکیده

توجه به ایمنی در برنامه­ریزی حمل و نقل نیازمند دستیابی به شاخص­های ایمنی در سطح کلان می­باشد. این امر با انجام مطالعات ایمنی و استفاده از متغیرها در سطح کلان امکان­پذیر می­باشد. استفاده از متغیرهای کلان، ساخت مدل­های پیش­بینی تصادفات را آسان­تر و کم­هزینه­تر می­کند. در این مطالعه با استفاده از متغیرها، در سطح کلان، مدل پیش­بینی تعداد تصادفات ترافیکی به دست آمد. متغیرهای مستقل شامل مجموع طول شبکه معابر در یک ناحیه ترافیکی، نسبت طول معابر با درجه عملکردی متفاوت به طول کل معابر موجود در یک ناحیه ترافیکی، نسبت طول خطوط اتوبوس به طول کل معابر و چگالی تقاطعات در یک ناحیه ترافیکی در نظر گرفته شد. بر این اساس اطلاعات مرتبط با 16137 تصادف در 96 ناحیه ترافیکی به دست آمد. پس از ساخت مدل پیش­بینی تعداد تصادفات، با استفاده از روش تجربی بایس (EB) نواحی ترافیکی از نظر ایمنی الویت­بندی شدند و نواحی با بیشترین پتانسیل بهبود مشخص گردید. بر اساس نتایج حاصل افزایش طول شبکه معابر و نسبت معابر با درجه عملکردی شریانی درجه 2 در یک ناحیه ترافیکی موجب افزایش احتمال وقوع تصادف در آن ناحیه، و افزایش  نسبت معابر با درجه عملکردی جمع و پخش­کننده و محلی در یک ناحیه ترافیکی موجب کاهش تعداد تصادفات در آن ناحیه می­گردد. در این راستا نسبت معابر با درجه عملکردی جمع و پخش­کننده در یک ناحیه ترافیکی دارای کمترین تاثیر و نسبت معابر با درجه عملکردی محلی در یک ناحیه ترافیکی بیشترین تاثیر را دارا می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of TAZ safety using EB method and macro models

نویسندگان [English]

  • Nemat Soltani 1
  • Mahmoud Saffarzadeh 2
  • Ali Naderan 3
  • Milad Abolhasani 4
1 Tarahan Parseh Transportation Research Institute, Tehran, Iran.
2 Department of Civil & Environmental Engineering, Tarbiat Modares University, Tehran, Iran.
3 . Islamic Azad University, Tehran Science and Research Branch
4 Civil and Environmental Engineering Faculty, Amirkabir University.
چکیده [English]

Safety consideration in transportation planning requires macro-level safety indicators. This is possible using various variables in macro-level safety studies. Using macro variables lead to easier and less costly accident predictive models. In this study, the predictive model of accident frequency obtained using macro level variables. Independent variables include, total length of the road network, the ratio of the length of roads network across functional classification (principal arterial, minor arterial, collector and local) to the length of all the roads, ratio of length of the bus lines to the total length of road network and density of the intersections in a Traffic Analysis Zone (TAZ). Accordingly, information of 16137 accidents in 96 TAZ collected. Then, the TAZs prioritized based on safety using Empirical Bayesian Method and TAZs with the highest Potential for Improvement (PI) found. Based on the results, increasing in length of the road network and the ratio of the length of road network across minor arterial in a TAZ, increases the chance of an accident occurred in that TAZ and a higher ratio of collector roads and local roads decreases the number of accidents in the TAZ. In this regard, the ratio of collector roads has the least and the ratio of local roads has the greatest impact.

کلیدواژه‌ها [English]

  • Empirical Bayesian methods
  • Macro variables
  • negative binomial model
  • traffic analysis zone
- Abdel-Aty, M., Siddiqui, C., Huang, H., and Wang, X. (2011) “Integrating trip and roadway characteristics to manage safety in traffic analysis zones”, Transportation Research Record: Journal of the Transportation Research Board(2213), pp. 20-28.
- Association, W. R. (2003) “Road safety manual”, Piarc technical committee on road safety.
- Dong, N., Huang, H., Xu, P., Ding, Z., and Wang, D. (2014) “Evaluating spatial-proximity structures in crash prediction models at the level of traffic analysis zones”, Transportation Research Record: Journal of the Transportation Research Board(2432), pp. 46-52.
- Elmitiny, N., Yan, X., Radwan, E., Russo, C., and Nashar, D. (2010) “Classification analysis of driver's stop/go decision and red-light running violation”, Accident Analysis and Prevention, Vol. 42, pp 101-111.
- European Commission., )2016( “Road safety in the European Union: Trends, statistics and main challenges”, European Commission, November 2016.
- Haghighi, F.R., (2017) “Assessment of various hot spot identification methods based on field investigation” Journal of Transportation Research, in press.
- Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., and Abdel-Aty, M. (2016) “Macro and micro models for zonal crash prediction with application in hot zones identification”, Journal of Transport Geography, Vol. 54, pp. 248-256.
- Köll, H., Bader, M., and Axhausen, K.W. (2004) “Driver behaviour during flashing green before amber: a comparative study”, Accident Analysis and Prevention, Vol. 36, pp 273-280
- Lee, J., and Mannering, F. L. (1999) “Analysis of roadside accident frequency and severity and roadside safety management”, Washington State Department of Transportation Olympia, WA.
- Lee, J., M. Abdel-Aty & Q. Cai (2017) Intersection crash prediction modeling with macro-level data from various geographic units. Accident Analysis & Prevention, 102, 213-226.
- Mannering, F. L., and Bhat, C. R. (2014) “Analytic methods in accident research: Methodological frontier and future directions”, Analytic methods in accident research, Vol. 1, pp. 1-22.
- Naderan, A. (2011) “Forecasting Crashes in Urban Districts using Aggregate Crash Prediction Models”, Journal of Transportation Engineering, Vol. 2, pp 155-169.
- Papaioannou, P. (2007), “Driver behaviour, dilemma zone and safety effects at urban signalized intersections in Greece”, Accident Analysis and Prevention, Vol. 39, pp 147-158.
- Pulugurtha, S. S., and Sambhara, V. R. (2011) “Pedestrian crash estimation models for signalized intersections”, Accident Analysis and Prevention, Vol. 43. No. 1, pp. 439-446.
- Pulugurtha, S. S., Duddu, V. R., and Kotagiri, Y. (2013) “Traffic analysis zone level crash estimation models based on land use characteristics”, Accident Analysis and Prevention, Vol. 50, pp. 678-687.
- Quistberg, D. A., Howard, E. J., Ebel, B. E., Moudon, A. V., Saelens, B. E., Hurvitz, P. M., Curtin, J. E., and Rivara, F. P. (2015) “Multilevel models for evaluating the risk of pedestrian–motor vehicle collisions at intersections and mid-blocks”, Accident Analysis and Prevention, Vol. 84, pp. 99-111.
- Road Maintenance and Transportation Organization (RMTO). )2015( “RMTO-Statistical yearbook, 2015”, Ministry of Road and Urban Development, Iran, 2015.
- Soltani, N., Mamdoohi, A.R. (2016) “A Model of Driver Behavior in Response to Road Roughness: A Case Study of Yazd Arterials”, Journal of Geotechnical and Transportation Engineering, Vol 2. No 2. pp 46-50.
- Soltani, N., Saffarzadeh, M., Naderan, A., (2018) “Evaluation of micro and macro models in identifying urban hot zones; Journal of Transportation Research, in press.
- Wang, J., Huang, H., and Zeng, Q. (2017) “The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian”, Accident Analysis and Prevention, Vol. 98, pp 223–231.
- Wang, X., Wu, X., Abdel-Aty, M., and Tremont, P. J. (2013) “Investigation of road network features and safety performance”, Accident Analysis and Prevention, Vol. 56, pp. 22-31.
- Wang, Y., and Kockelman, K. M. (2013) “A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods”, Accident Analysis and Prevention, Vol. 60, pp. 71-84.
- Washington, S., Metarko, J., Fomunung, I., Ross, R., Julian, F., and Moran, E. (1999) “An inter-regional comparison: fatal crashes in the southeastern and non-southeastern United States: preliminary findings”, Accident Analysis and Prevention, Vol. 31, No. 1, pp. 135-146.
- Xu, P., and Huang, H. (2015) “Modeling crash spatial heterogeneity: random parameter versus geographically weighting”, Accident Analysis and Prevention, Vol. 75, pp. 16-25.
- Xu, P., Huang, H., Dong, N., and Abdel-Aty, M. (2014) “Sensitivity analysis in the context of regional safety modeling: Identifying and assessing the modifiable areal unit problem”, Accident Analysis and Prevention, Vol. 70, pp. 110-120.