ارایه یک مدل قیمت‌گذاری محدوده‌ ترافیکی با در نظرگیری محدودیت ظرفیت کمان‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی برنامه‏ریزی حمل‏ونقل، موسسه عالی آموزش و پژوهش مدیریت و برنامه‏ریزی

2 استادیار دانشکده مهندسی عمران، دانشگاه تهران

3 دانشیار، دانشکده مهندسی عمران و محیط زیست،دانشگاه تربیت مدرس

چکیده

کمان‏ها دارای ظرفیت محدودی هستند که تابعی از ویژگی‏های فیزیکی آن‏ها است. زمانی که حجم جریان در کمان به نزدیک ظرفیت‏ آن کمان می‏رسد، در الگوی جریان شبکه، در کمان‏های بالادستی آن کمان، صف ایجاد می‏شود و به اصطلاح شبکه شلوغ می‏شود و هزینه‏هایی بر ساکنین شهرها تحمیل می‏کند. قیمت‏گذاری محدوده‌های ترافیکی یکی از موثرترین راهکارهای مدیریت تقاضا است، که می‏تواند بدون افزایش شلوغی کل شهر، شلوغی نواحی مرکزی را کاهش دهد. در اکثر مطالعات قیمت‏گذاری ترافیک، ظرفیت کمان‏ها به صورت صریح در قالب یک محدودیت در نظر گرفته نمی‏شود. هدف این مقاله قیمت‏گذاری محدوده ترافیکی با در نظر گرفتن محدودیت صریح ظرفیت کمان و بررسی تفاوت‏های آن با قیمت‏گذاری بدون در نظر گرفتن محدودیت صریح ظرفیت کمان است. به بیان دیگر این پژوهش درصدد است تا رابطه بین در نظر گرفتن ظرفیت برای جریان در کمان و افزایش یا کاهش عوارض را شناسایی کند. بدین منظور یک مدل عمومی دوسطحی برای حل مساله استفاده می‏شود، که در آن مساله‌ی سطح بالا عوارض بهینه را تعیین می‏کند و شرط تعادلی بودن جریان در شبکه توسط یک الگوریتم تخصیص ترافیک در سطح پایین تضمین می‌شود. الگوریتمی مبتنی بر بهینه‌سازی انبوه ذرات (PSO) به عنوان روش حل مساله‌ی سطح بالا ارایه می‌شود و از الگوریتم شهپر و همکاران برای حل مساله تخصیص ترافیک در سطح پایین استفاده می‏شود. الگوریتم پیشنهادی روی شبکه سوفالز در دو حالت با و بدون محدودیت‌ ظرفیت اجرا می‌شود. نتایج نشان می‌دهند که قیمت‏گذاری بهینه متاثر از اطلاعات ظرفیت کمان است. در شبکه سوفالز در قیمت‏گذاری با در نظر گرفتن محدودیت ظرفیت از 10 کمان ورودی به محدوده، 6 کمان عوارض می‏پذیرند، در حالی‏که که در حل بدون در نظر گرفتن محدودیت ظرفیت، 8 کمان عوارض می‏پذیرند. هزینه کل شبکه در قیمت‏گذاری با دیدن محدودیت ظرفیت کمان، %13/1 درصد نسبت به عدم قیمت‏گذاری بهبود می‏یابد. این بهبود برای حالتی که ظرفیت دیده نشود، 38/0درصد است. مجموع عوارضی که محدوده وارد می‏شود نیز، از 86/1 واحد به 86/0 واحد کاهش می‏یابد.

کلیدواژه‌ها

موضوعات


-       Aashtiani, H. A and Magnanti, T. (1983) “A linearization and decomposition algorithm for computing urban traffic equilibria”, Massachusetts Institute of Technology, Operations Research Center
-       Aashtiani, H. Z. (1979) ”The multi-modal traffic assignment problem”, PhD dissertation, Massachusetts Institute of Technology.
-       Alonze, S. (2015) “Traffic congestion to cost the UK economy more than £300 billion over the next 16 years”, [online] Available at: http://inrix.com/press-releases/traffic-congestion-to-cost-the-uk-economy-more-than-300-billion-over-the-next-16-years/ [accessed 14 October. 2014].
-       Asadi, S., Florian,M. and Sarvi, M. )2016( “A new policy in congestion pricing: Why only toll? Why not subsidy? Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport (CIRRELT), Montreal, Canada.
-       Branston, D. (1976) “Link capacity functin: A review”, Transportation Research, Vol. 10, pp. 223-236.
-       Bureau of Infrastructure, Transport and Regional Economics (BITRE)( 2015) “Traffic and congestion cost trends for Australian capital cities”, Information Sheet 74, BITRE, Canberra
By Penalty Methods”, Proc. IEEE Internat.Conf. Circuits Comput, Vol. 1, pp.162–166
-       Cavallaro, F., Giaretta, F and Nocera,S. (2017). "The potential of road pricing schemes to reduce carbon emissions." Transport Policy, Vol. 67, pp. 85-92
-       Dafermos, S. (1973) “Toll patterns for multiclass-user transportation networks”. Transportation Science”, Vol.7, No.3, pp. 211-223
-       Daganzo, C. (1977) “On the traffic assignment problem with flow dependent costs—I”, Transportation Research, Vol.11, No.6, pp.433-437.
-         De Palma, A., Lindsey, R. (2004) “Congestion pricing with heterogeneous travelers: A general-equilibrium welfare analysis”, Networks and Spatial Economics, Vol.4, No.2, 135-160.
-       Gu, Z., Liu, Z., Cheng, Q and Saberi, M. (2018).” Congestion pricing practices and public acceptance: A review of evidence.” Case Studies on Transport Policy . Vol.6, No.1, 94-101.
-     Hearn, D., Ribera, J. (1980) “Bounded Flow Equilibrium Problems by penalty methods. New York, IEEE, Vol.1, pp. 162–166.
-       Hestenes, M. (1969) “Multipliers and gradient methods”, Journal of Optimization Theories and Applications”, Vol.4, No.5, pp.303–320.
-       Inouye, H. (1987) “Traffic equilibria and its solution in congested road networks”, Proceedings of IFAC Conference on Control in Transportation Systems, Vienna, July 1986. Pp.267-272
-       Knight, F. (1924) “Some fallacies in the interpretation of social cost”, The Quarterly Journal of Economics, Vol.38, No.4, pp. 582-606.
-       Kolstad, C. D. (1985) “A review of the literature on bi-level mathematical programming”, No. LA-10284-MS). Los Alamos, NM: Los Alamos National Laboratory.
-       Larsson, T. and Patriksson, M. (1994) “Equilibrium characterizations of solutions to side constrained asymmetric traffic assignment models”, Le Matematiche, Vol.49, No.2, pp. 249-280
-       Larsson, T. and Patriksson, M. (1995) “An augmented Lagrangean dual algorithm for link capacity side constrained traffic assignment problems”, Transportation Research Part B: Methodological, Vol.29, No.6, pp.433–455.
-       Leblanc, L., Morlok, E. and Pierskalla, W. (1975) “An efficient approach to solving the road network equilibrium traffic assignment problem”, Transportation Research., Vol.9, No.5, pp.309-318.
-       Nie, Y.,.Zhang, H. M and Lee, D. H. (2004) “Models and algorithms for the traffic assignment problem with link capacity constraints”, Transportation Research Part B: Methodological, Vol.38, No.4, pp.285-312.
-       Pigou, A. (1920) “The economics of welfare”, London: Palgrave Macmillan,”.
-       Powell, M. J. D. (1969) “A method for nonlinear constraints in minimization problems”, Optimization”, pp. 283-293.
-       Shahpar, A., Aashtiani. H. A. and Babazadeh, A. (2008) "Dynamic penalty function method for the side constrained traffic assignment problem." Applied Mathematics and Computation, Vol.206, No.1, pp.332-345.
-       Sheffi, Y. (1985) "Urban transportation networks: equilibrium analysis with mathematical programming methods", New Jersey, Prentice-Hall.
-             Small, K., Yan, J. (2001) “The value of “value pricing” of roads: Second-best pricing and product differentiation”, Journal of Urban Economics, Vol.49, No.2, pp. 310-336.
-             Verhoef, E., Rouwendal, J and Rietveld, P, (2003) “Congestion Caused by speed differences”, Journal of Urban Economics, Vol. 45, No. 3, pp.383-406.
-             Walters, A. (1961) "The theory and measurement of private and social cost of highway congestion",Econometrica: Journal of the Econometric Society,Vol.29,No.4, pp 676-699
-             Wardrop, J. G. (1952) “Some theorithical aspect of road traffic research”, London: Proceedings of the Institute of Civil Engineers, Part II, Engineering Divisions, Airport Maritime Railway Road.
-             Yin, Y. and Lawphongpanich, S. (2009) “Alternative marginal-cost pricing for road networks”, NETNOMICS: Economic Research and Electronic Networking, Vol.10, No.1, pp.77-83.
-       آرین کاظمی، بابک میربها و علی عبدی کردانی.(1397) بررسی تاثیر هزینه پارکینگ حاشیه‏ای بر انتخاب یا عدم انتخاب شیوه سواری شخصی، فصلنامه مهندسی حمل‏ونقل،سال نهم، شماره سوم355-343
-       جوانی، ب. )1397(. تخصیص ترافیک پویای چند کلاسی: فرمولبندی و الگوریتم مبتنی بر مسیر، پایان‌نامه دکتری، دانشکده مهندسی عمران، دانشگاه تهران
- فلاح تفتی، م.، شهابی،س و تفی زاده، ی. (1397). مدل‏سازی رفتار انتخاب وسیله کاربران وسایل نقلیه شخصی در قبال اعمال سیاست‏های مدیریت تقاضای سفر، ، فصلنامه مهندسی حمل‏ونقل،سال نهم، شماره چهارم، 595-571