پاسخ شبه‌استاتیکی روسازی آسفالتی لایه‌ای با رفتار ویسکوالاستیک به روش المان دیفرانسیل کوادرچر

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانش‌آموختة کارشناسی‌ارشد، دانشکدة مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

2 استادیار، دانشکدة مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

3 استاد، دانشکدة مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

تحلیل پاسخ روسازی راه اعم از جابجایی، کرنش و تنش ناشی از بارهای آنی وارده، یکی از چالش‌های مهم طراحی روسازی است. برای تحلیل عددی این مسئله می‌توان روش‌های متعددی همچون اجزاء محدود، اجزاء مرزی و غیره را به کار گرفت اما از آنجایی‌که در همة مسائل، دقت بیشتر و زمان کمتر رسیدن به پاسخ، انگیزة اصلی است، در این پژوهش، روش نوین دیفرانسیل کوادرچر (DQM) به کار گرفته شده است. در بیشتر پژوهش‌های انجام‌شده تا به امروز، رفتار روسازی انعطاف‌پذیر را به‌صورت الاستیک در نظر گرفته‌اند، درصورتی‌که لایة بتن آسفالتی (AC) سازة روسازی، به‌صورت ویسکوالاستیک رفتار می‌کند. نظریة ویسکوالاستیسیته، یک دیدگاه قدیمی است اما کاربرد آن در مدل‌سازی روسازی انعطاف‌پذیر، با توجه به اثر توام ساختار لایه‌ای روسازی و رفتار ویسکوالاستیک مخلوط آسفالتی، کار مدل‌سازی را پیچیده‌تر می‌سازد. در این پژوهش، نخست، با انتگرال‌گیری افزایشی اصل تطابق بولتزمنو بکارگیری مدل ماکسول-ویچرت تعمیم‌یافته برای رفتار ویسکوالاستیک، معادلات حرکت افزایشی سه‌بعدی تقارن‌محوری بدست می‌آیند و با استفاده از DQM گسسته‌سازی می‌شوند. سپس مثال‌هایی به منظور صحت‌سنجی مدل سه‌بعدی تقارن محوری لایه‌ای با رفتار ویسکوالاستیک خطی با بکارگیری روش المان دیفرانسیل کوادرچر (DQEM)، مدل‌سازی و نتایج حاصل از این روش با حل‌های تحلیلی و نتایج روش اجزا محدود (نرم‌افزار آباکوس) مقایسه می‌گردد. در پایان، سازة روسازی انعطاف‌پذیر با رفتار ویسکوالاستیک خطی تحت بارگذاری سینوسی و به‌صورت شبه‌استاتیکی تحلیل شده و تأثیرات پاسخ ویسکوالاستیک روسازی تحت بارگذاری بار سرعت‌های مختلف وسیلة نقلیه و همچنین تنش و کرنش کششی زیر لایة AC، تنش قائم روی بستر و جابجایی قائم سطح روسازی که به طور معمول در طراحی روسازی مورد استفاده قرار می گیرند، بررسی می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Quasi-Static Response Analysis of Viscoelastic Flexible Pavement using Differential Quadrature Element Method

نویسندگان [English]

  • Sina Rameshkhah 1
  • Mahmoud Malakouti Aloon Abadi 2
  • Parviz Malekzadeh 3
  • Seyed Hamed Meraji 2
1 MSC. Grad., Faculty of Engineering, Khalije Fars University, Boushehr, Iran
2 Assistant Professor, Faculty of Engineering, Khalije Fars University, Boushehr, Iran
3 Professor, Faculty of Engineering, Khalije Fars University, Boushehr, Iran
چکیده [English]

Analysis of road pavements responses such displacements, strains and stresses resulting from imposed impulsive loads, is one of the most important issues in pavement design. Various methods such as finite element, boundary element etc. can be used for analysis of this problem, but, as in all matters, the main goal is to reach high accuracy while spending less time for analysis, in this research, a new method of differential quadrature method (DQM) is used. In most studies implemented to date, the behavior of flexible pavement is considered as an elastic material but the asphalt concrte (AC) layer on top of the flexible pavement, behave as a viscoelastic material. The theory of viscoelasticity is an old subject, but its application in flexible pavement modeling, due to the time-dependent behavior of the viscoelastic materials and also the layered structure of flexible pavement, complicates the modeling.
      In this paper, first, with incremental integration of Boltzmann's correspondence principle and using the generalized Wiechert model for viscoelastic behavior, incremental equilibrium equations of 3D axisymmetric condition are obtained and discritized in spatial domains using DQM. Then, in order to verificate, three-dimensional multilayered viscoelastic problems are modeled using Differential Quadrature Element method (DQEM), and the results of this method are compared with analytical solutions and finite element method (ABAQUS software) results. In the end, a flexible pavement structure with viscoelastic behavior under sinusoidal loading is simulated quasi-statically, and the effects of the viscoelastic response of the pavement under loading with different speed of vehicles as well as several performance indicators such as tensile stress and tensile strain under the AC layer, vertical stress on the subgrade, and vertical displacement of the pavement surface, which are commonly used in the design of the pavement, are investigated.

کلیدواژه‌ها [English]

  • Pavements
  • ABAQUS
  • DQEM
  • Weichert model
-Ahlborn, G. (1972) "ELSYM5, computer program for determining stresses and deformations in five layer elastic system". University of California, Berkeley.  
-Al-Qadi, I., Wang, H. and Tutumluer, E. (2010) "Dynamic analysis of thin asphalt pavements by using cross-anisotropic stress-dependent properties for granular layer", Transportation Research Record: Journal of the Transportation Research Board, No.2154, pp. 156-163.
-Ameri, M., Malakouti, M. and Malekzadeh, P. (2014) "Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method", Mechanics of Time-Dependent Materials, Vol.18, No.1, pp. 275-291.
-Bellman, R. and Casti, J. (1971) "Differential quadrature and long-term integration", Journal of Mathematical Analysis and Applications, Vol.34, No.2, pp. 235-238.
-Bellman, R., Kashef, B. and Casti, J. (1972) "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", Journal of Computational Physics, Vol.10, No.1, pp. 40-52.
-Bert, C. W. and Malik, M. (1996) "Differential quadrature method in computational mechanics: a review", Applied Mechanics Review, Vol.49, No.1, pp. 1-28.
-Boltzmann, L. (1878) "Zur theorie der elastischen nachwirkung", Annalen der Physik, Vol.241, No.11, pp. 430-432.
-Chabot, A., Chupin, O., Deloffre, L. and Duhamel, D. (2010) "Viscoroute 2.0 a: tool for the simulation of moving load effects on asphalt pavement", Road Materials and Pavement Design, Vol.11, No.2, pp. 227-250.
-Chazal, C. and Pitti, R. M. (2012) "Incremental viscoelastic formulation using generalized variables for thin structures: relaxation differential approach", Acta Mechanica, pp. 1-10.
-Chen, E. Y., Pan, E. and Green, R. (2009) "Surface loading of a multilayered viscoelastic pavement: Semianalytical solution", Journal of Engineering Mechanics, Vol.135, No.6, pp. 517-528.
-Civan, F. and Sliepcevich, C. (1984) "Differential quadrature for multi-dimensional problems", Journal of Mathematical Analysis and Applications, Vol.101, No.2, pp. 423-443.
-de Araújo, P. C., Soares, J. B., de Holanda, Á. S., Parente, E. and Evangelista, F. (2010) "Dynamic viscoelastic analysis of asphalt pavements using a finite element formulation", Road Materials and Pavement Design, Vol.11, No.2, pp. 409-433.
-De Jong, D., Peatz, M. and Korswagen, A. (1973) "Computer program Bisar layered systems under normal and tangential loads", Konin Klijke Shell-Laboratorium, Amsterdam. External Report AMSR, Vol.6.
-Farid, M., Zahedinejad, P. and Malekzadeh, P. (2010) "Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method", Materials and design, Vol.31, No.1, pp. 2-13.
-Harichandran, R. S., Baladi, G. Y. and Yeh, M.-S. (1989) "Development of a computer program for design of pavement systems consisting of bound and unbound materials", Department of Civil and Environmental Engineering, Michigan State University.
-Huang, C.-W., Abu Al-Rub, R. K., Masad, E. A. and Little, D. N. (2011) "Three-dimensional simulations of asphalt pavement permanent deformation using a nonlinear viscoelastic and viscoplastic model", Journal of Materials in Civil Engineering, Vol.23, No.1, pp. 56-68.
-Huang, Y. H. (2004) "Pavement design and analysis": Pearson/Prentice Hall.
-Hwang, D. and Witczak, M. (1979) "Program DAMA (Chevron) “User’s Manual", Department of Civil Engineering, University of Maryland, MD.
-Keshavarz, A., Malekzadeh, P. and Hosseini, A. (2016) "Time domain dynamic analysis of floating piles under impact loads", International Journal of Geomechanics, pp. 04016051.
-Khavassefat, P., Jelagin, D. and Birgisson, B. (2012) "A computational framework for viscoelastic analysis of flexible pavements under moving loads", Materials and structures, Vol.45, No.11, pp. 1655-1671.
-Kim, J. (2011) "General viscoelastic solutions for multilayered systems subjected to static and moving loads", Journal of Materials in Civil Engineering, Vol.23, No.7, pp. 1007-1016.
-Lee, H.-J. (1996) "Uniaxial constitutive modeling of asphalt concrete using viscoelasticity and continuum damage theory", Carolina: North Carolina State University.
-Liu, P., Wang, D. and Oeser, M. (2015) "Application of semi-analytical finite element method coupled with infinite element for analysis of asphalt pavement structural response", Journal of Traffic and Transportation Engineering (English Edition), Vol.2, No.1, pp. 48-58.
-Malakouti, M., Ameri, M. and Malekzadeh, P. (2014a). "Dynamic viscoelastic incremental-layerwise finite element method for multilayered structure analysis based on the relaxation approach", Journal of Mechanics, Vol.30, No.06, pp. 593-602.
-Malakouti, M., Ameri, M. and Malekzadeh, P. (2014b) "Incremental layerwise finite element formulation for viscoelastic response of multilayered pavements", International Journal of Transportation Engineering, Vol.1, No.3, pp. 183-198.
-Malekzadeh, P. (2011) "Three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method", Composite Structures, Vol.93, No.4, pp. 1246-1254.
-Malekzadeh, P. and Heydarpour, Y. (2015) "Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates", Meccanica, Vol.50, No.1, pp. 143-167.
-Muliana, A. and Khan, K. A. (2008) "A time-integration algorithm for thermo-rheologically complex polymers", Computational Materials Science, Vol. 41, No. 4, pp. 576-588.
-Park, S. and Schapery, R. (1999) "Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series", International Journal of Solids and Structures, Vol. 36, No. 11, pp. 1653-1675.
-Quan, J. and Chang, C.-T. (1989) "New insights in solving distributed system equations by the quadrature method—II. Numerical experiments", Computers and chemical engineering, Vol. 13, No. 9, pp. 1017-1024.
-Raad, L. and Figueroa, J. L. (1980) "Load response of transportation support systems", Journal of Transportation Engineering, Vol.106, No.1, pp. 111-128.
-Secor, K. E. and Monismith, C. L. (1961) "Analysis of triaxial test data on asphalt concrete using viscoelastic principles". Paper presented at the Highway Research Board Proceedings.
-Sherbourne, A. N. and Pandey, M. D. (1991) "Differential quadrature method in the buckling analysis of beams and composite plates", Computers and Structures, Vol.40, No.4, pp. 903-913.
-Shu, C. (1991) "Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation",  University of Glasgow.  
-Shu, C. (2012) "Differential quadrature and its application in engineering": Springer Science and Business Media.
-Shu, C. and Richards, B. (1990) "High resolution of natural convection in a square cavity by generalized differential quadrature". Paper presented at the Proceedings of the 3rd International Conference on Advances in Numeric Methods in Engineering: Theory and Application, Swansea, UK.
-Shu, C. and Richards, B. E. (1992) "Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations", International Journal for Numerical Methods in Fluids, Vol.15, No.7, pp. 791-798.
-Siddharthan, R., Zafir, Z. and Norris, G. M. (1993) "Moving load response of layered soil. I: Formulation", Journal of Engineering Mechanics, Vol.119, No.10, pp. 2052-2071.
-Simo, J. and Hughes, T. J. (1998) "Computational inelasticity, volume 7 of Interdisciplinary Applied Mathematics": Springer-Verlag, Berlin.
-Sorvari, J. and Hämäläinen, J. (2010) "Time integration in linear viscoelasticity—a comparative study", Mechanics of Time-Dependent Materials, Vol.14, No.3, pp. 307-328.
-The MathWorks, I. MATLAB Release 2016b. Natick, Massachusetts, United States.: The MathWorks, Inc.
-Varma, S. and Kutay, M. E. (2016) "Viscoelastic Nonlinear Multilayered Model for Asphalt Pavements", Journal of Engineering Mechanics, Vol.142, No.7, pp. 04016044.
-Wang, D., Roesler, J. R. and Guo, D.-Z. (2011) "Innovative algorithm to solve axisymmetric displacement and stress fields in multilayered pavement systems", Journal of Transportation Engineering, Vol.137, No.4, pp. 287-295.
-Wang, X. (2015) "Differential quadrature and differential quadrature based element meththeory and applications": Butterworth-Heinemann.
-Warren, H. and Dieckmann, W. (1963) "Numerical computation of stresses and strains in a multiple-layer asphalt pavement system", International Report, Chevron Research Corporation, Richmond, CA.
-Zaghloul, S. M. and White, T. (1993) "Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement", Transportation Research Record, No.1388, pp. 60-69.
-Zhao, Y., Ni, Y., Wang, L. and Zeng, W. (2014) "Viscoelastic response solutions of multilayered asphalt pavements", Journal of Engineering Mechanics, Vol.140, No.10, pp. 04014080.
-Zocher, M. (1995) "A three dimensional finite element evaluation of linear viscoelastic composites with particular reference to matrix cracking". (Ph.D. Dissertation), Texas AandM University.  
-Zocher, M., Groves, S. and Allen, D. (1997) "A three-dimensional finite element formulation for thermoviscoelastic orthotropic media", International Journal for Numerical Methods in Engineering, Vol.40, No.12, pp. 2267-2288.