بهینه سازی استراتژی‌های مدیریت اختلال در خطوط راه آهن شهری با استفاده از الگوریتم جستجوی همسایگی متغیر

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده مهندسی صنایع و سیستم ها، دانشگاه تربیت مدرس

2 دانشکده مهندسی صنایع دانشگاه تربیت مدرس

3 دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس

4 دانشکده راه آهن، دانشگاه علم و صنعت

چکیده

رخداد اختلالات در راه آهن شهری باعث بروز تاخیرات قطارها، افزایش زمان انتظار مسافرین، افت سطح خدمت و استواری برنامه زمانبندی می‌شود. مدیریت اختلال در راه‌آهن، مجموعه روش‌هایی جهت مدیریت رخدادهای پیش‌بینی نشده‌ و کنترل عملکرد سیستم است. در این تحقیق، مسدودی موقتی بخشی از مسیر به عنوان عامل اختلال در برنامه حرکت قطارها در نظر گرفته شده است. جهت حل مساله از رویکرد بهینه‌سازی مبتنی بر شبیه‌سازی برای کمینه کردن متوسط مجموع زمان‌های انتظار و سفر مسافرین استفاده شده است. استراتژی های مدیریت اختلال بصورت ترکیبی و شامل سیاست توقف-عبور و گردش مسیر است. مدل شبیه سازی به منظور مدل سازی متغیرهای تصادفی در مساله شامل زمان سیر احتمالی، نرخ ورود تصادفی مسافرین به ایستگاه ها توسعه داده شده است. بخش بهینه سازی رویکرد پیشنهادی نیز شامل الگوریتم جستجوی همسایگی متغیر است. جهت اعتبارسنجی رویکرد مدیریت اختلال، از چند سناریوی اختلال در خط 1 متروی تهران استفاده شده است. نتایج حل مساله روی مسایل واقعی، کارایی و کاربرد مناسب روش بهینه سازی مبتنی بر شبیه سازی را در تصمیم‌گیری در شرایط بروز اختلال و مسدودی مسیر نشان می‌دهد. همچنین نتایج نشان داده است که استراتژی ترکیبی مدیریت اختلال نسبت به استراتژی های مستقل، بهبود بیشتری در کاهش زمان های سفر مسافرین ایجاد می‌کند. پیاده‌سازی روش جستجوی همسایگی روی نمونه مسایل واقعی و استفاده از استراتژی ترکیبی مدیریت اختلال باعث کاهش حدود 14 درصدی متوسط زمان سفر مسافرین شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of disruption management strategies for urban rail using variable neighborhood search algorithm

نویسنده [English]

  • seyed hesam aldin zegordi 2
چکیده [English]

The occurrence of disruptions in urban rail cause train delays, extra passenger waiting times, and drop in service level and schedule adherence. Rail disruption management refers to the implementation of the control strategies to manage unexpected events and improve the system performance. In this study, a temporary line blockage is regarded as a source of disruption in train movements. A simulation-based optimization approach is proposed to minimize the total average waiting times and traveling times of passengers. Disruption management strategies include skip-stop and short-turn control policies. Simulation technique is used to model random variables in question, including train traveling time, random arrival rate of passengers, and the stochastic recovery time. The proposed approach also includes the variable neighborhood search algorithm to find the near optimal solutions. In order to validate the proposed methodology, several disruption scenarios in Tehran Metro Line 1 are investigated. The results of solving the real problems show the efficiency and proper use of simulation-based optimization method in the decision-making under disruption. The results have also shown that a combination of skip-stop and short-turn strategies gives travelers greater improvements in reducing the waiting and travelling times. The implementation of variable neighborhood search method on the real-world case study demonstrate that the combined strategy reduces the average traveling time for passengers about 14%.

کلیدواژه‌ها [English]

  • Urban rail
  • Skip-Stop
  • short-turn strategy
  • expected traveling times
  • Variable neighborhood search
-بهبهانی، حمید، افندی زاده، شهریار و رحیم اف، کامران (a1387) "تحلیل زمان انتظار مسافران در ایستگا‌ه‌های مترو با استفاده از تکنیک شبیه سازی (مطالعه موردی متروی تهران)". پژوهشنامه حمل و نقل، سال پنجم، شماره اول، ص 15-30.
-بهبهانی، حمید، افندی زاده، شهریار و رحیم اف، کامران (1387) "بهینه سازی مدل تأخیر مسافران مترو با استفاده از الگوریتم تصمیم گیری (MADM) چند شاخصه"، پژوهشنامه حمل و نقل، سال پنجم، شماره سوم، ص 233-248.
-حسن نایبی، عرفان، حسینی، سید رسول، مردانی، سهیل و ساجدی نژاد، آرمان (1391) " نرم افزار زمانبندی حرکت قطارها SIMARail مبتنی بر رویکرد بهینه سازی بر پایه‌ شبیه سازی"، یازدهمین کنفرانس مهندسی حمل و نقل و ترافیک ایران، تهران.
-حسن نایبی، عرفان، ساجدی نژاد، آرمان، مردانی، سهیل و طاهری فر، مرتضی( 1393) "بهینه سازی سرفاصله زمانی حرکت قطارها در خطوط مترو با رویکرد بهینه سازی مبتنی بر شبیه سازی"،  شانزدهمین همایش بین المللی حمل و نقل ریلی، تهران، انجمن مهندسی حمل و نقل ریلی ایران.
-خان‌محمدی، سهراب؛ صندیدزاده، محمد علی و صالحی، پژمان (1392) "هوشمندسازی ترافیک خط یک متروی تهران با استفاده از منطق فازی"، سیزدهمین کنفرانس بین المللی مهندسی حمل و نقل و ترافیک، تهران.
-خطیبی، اصغر، خاتمی فیروزآبادی، سید محمد علی و جوانشیر حسن (1391)  "مدلی برای کاهش زمان انتظار مسافران در ایستگاه های متقاطع خطوط متروی تهران"، دوازدهمین کنفرانس مهندسی حمل و نقل و ترافیک ایران، تهران.
-سجادی، سید جواد (1387) "زمانبندی حرکت قطارها در شبکه متروی تهران با استفاده از شبیه‌سازی کامپیوتری" پایان نامه کارشناسی ارشد، دانشکده مهندسی دانشگاه صنعتی شریف، تهران، ایران.
-صالحی، پژمان (1393)  "طراحی و پیاده سازی یک سیستم دانش بنیان جهت کنترل زمان اعزام قطارها در ترافیک سامانه قطارهای سریع السیر درون شهری و حومه با رویکرد توجه به ازدحام مسافری در ایستگاه های ریلی ( مطالعه موردی : نیمه جنوبی خط یک متروی تهران)، اولین همایش ملی راه آهن سریع السیر در ایران، تهران.
-نصیریان، فرزانه و رنجبر، محمد (1392) "زمانبندی اتوبوسهای درون شهری با هدف حداقل کردن زمان انتظار مسافرین"، سیزدهمین کنفرانس بین المللی مهندسی حمل و نقل و ترافیک، تهران.
-Albrecht, T. (2009) “Automated timetable design for demand-oriented service on suburban railways”. Public Transport, Vol. 1, No. 1, pp. 5-20.
-Canca, D., Barrena, E., Laporte, G. and Ortega, F.A. (2014) “A short-turning policy for the management of demand disruptions in rapid transit systems”, Annals of Operations Research, Vol. 246, No. 1-2, pp. 1-22.
-Canca, D., Barrena, E., Zarzo, A., Ortega, F. and Algaba, E. (2012) ”Optimal train reallocation strategies under service disruptions”, Procedia-Social and Behavioral Sciences, Vol. 54, No. 1, pp. 402-413.
-Carson, Y. and Maria, A. (1997) “Simulation optimization: methods and applications”, Proceedings of the 29th conference on winter simulation, pp. 118-126, IEEE Computer Society.
-Ding, Y. and Chien, S. (2001) “Improving transit service quality and headway regularity with real-time control”, Transportation Research Record: Journal of the Transportation Research Board, No. 1760, pp. 161-170.
-Eberlein, X. J. (1997) “Real-time control strategies in transit operations: Models and analysis”, Transportation Research Part A, Vol. 31, No. 1, pp. 69-70.
-Eberlein, X. J., Wilson, N. H., Barnhart, C. and Bernstein, D. (1998) “The real-time deadheading problem in transit operations control”, Transportation Research Part B: Methodological, Vol. 32, No. 2, pp. 77-100.
-Eberlein, X. J., Wilson, N. H. and Bernstein, D. (2001) “The holding problem with real–time information available”, Transportation Science, Vol. 35, No. 1, pp. 1-18.
-Ghoneim, N. S. A. and Wirasinghe, S. C. (1986) “Optimum zone structure during peak periods for existing urban rail lines”. Transportation Research Part B: Methodological, Vol. 20, No. 1, pp. 7-18.
-Grube, P., Núñez, F. and Cipriano, A. (2011) “An event-driven simulator for multi-line metro systems and its application to Santiago de Chile metropolitan rail network”, Simulation Modelling Practice and Theory, Vol. 19, No. 1, , pp. 393-405.
-Hansen, P. and Mladenović., N. (2014) “Variable neighborhood search”,  Search Methodologies: Springer, pp. 313-337.
-Jamili, A. and Aghaee, M. P. (2015) “Robust stop-skipping patterns in urban railway operations under traffic alteration situation”, Transportation Research Part C: Emerging Technologies, No. 61, pp.63-74.
-Jin, J. G., Teo, K. M. and Sun, L. (2013) “Disruption response planning for an urban mass rapid transit network”, Paper read at Transportation Research Board, 92nd Annual Meeting, Washington DC.
-Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M. and Figueira, G. (2015) “A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems”, Operations Research Perspectives, Vol. 2, No. 1, pp. 62-72.
-Kang, L., Wu, J., Sun, H., Zhu, X. and Wang, B. (2015) “A practical model for last train rescheduling with train delay in urban railway transit networks”, Omega, No. 50, pp.29-42.
-Koutsopoulos, H. and Wang, Z. (2007) “Simulation of urban rail operations: Application framework”, Transportation Research Record: Journal of the Transportation Research Board.
-Kuster, J., Jannach, D. and Friedrich, G. (2009) “Extending the RCPSP for modeling and solving disruption management problems”, Applied Intelligence,  Vol. 31, No. 3,  pp. 234-253.
-Liu, Z., Yan, Y., Qu, X. and Zhang, Y. (2013) “Bus stop-skipping scheme with random travel time”, Transportation Research Part C: Emerging Technologies, Vol. 35, No. 2,  pp. 46-56.
-Middelkoop, D. and Bouwman. M. (2001) “Simone: large scale train network simulations”, Paper read at Proceedings of the 33nd Conference on Winter Simulation.
-Mladenović, N. and Hansen. P. (1997) “Variable neighborhood search”,  Computers & Operations Research, Vol. 24, No. 11,  pp. 1097-1100.
-O'Dell, S. W. (1997) “Optimal control strategies for a rail transit line”, Massachusetts Institute of Technology, USA.
-O’Dell, S. W. and Wilson, N. H. (1999) “Optimal real-time control strategies for rail transit operations during disruptions”,   Computer-aided Transit Scheduling: Springer, pp. 299-323.
-Osuna, E. and Newell., G. (1972) “Control strategies for an idealized public transportation system”,  Transportation Science, Vol. 6, No. 1,  pp. 52-72.
-Puong, A. (2001) “A real-time train holding model for rail transit systems, Massachusetts Institute of Technology, USA.
-Puong, A. and Wilson, N. H. (2008) “A train holding model for urban rail transit systems”, Computer-aided Systems in Public Transport: Springer, pp. 319-337.
-Shen, S. (2000) “Integrated real-time disruption recovery strategies: A model for rail transit systems”, Massachusetts Institute of Technology, USA.
-Shen, S. and Wilson. N. H. (2001) “An optimal integrated real-time disruption control model for rail transit systems”, In Computer-aided scheduling of public transport: Springer, pp. 335-363.
-Simulation Notes Europe (SNE) ARGESIM/ASIM Pub., TU Vienna 22 (2): pp. 69-76.
-Tavakkoli-Moghaddam, R., Razie, Z. and Tabrizian, S. (2015) “Solving a bi-objective multi-product vehicle routing problem with heterogeneous fleets under an uncertainty condition”, International Journal of Transportation Engineereing, Vol. 3, No. 3,  pp. 207-225.
Ullrich, O., Lückerath, D., Franz, S. and Speckenmeyer, E. (2012) “Simulation and optimization of Cologne’s tram schedule”, Simulation Notes Europe, Vol. 22, No. 2, pp. 69-76.
-Ullrich, O., Lückerath, D. and Speckenmeyer, E. (2013) “A robust schedule for Montpellier's Tramway network”, Technical Report, Univ. Köln, 17 p.
-Wang, Y., De Schutter, B., van den Boom, T., Ning, B. and Tang, T. (2013) “Real-time scheduling for single lines in urban rail transit systems”,  Intelligent Rail Transportation (ICIRT), 2013 IEEE International Conference , pp. 1-6.
-Yin, J., Tang, T., Yang, L., Gao, Z. and Ran, B. (2016) “Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach”, Transportation Research Part B: Methodological, No. 91, pp.178-210.
دوره 9، شماره 3 - شماره پیاپی 36
فروردین 1397
صفحه 451-471
  • تاریخ دریافت: 23 تیر 1395
  • تاریخ بازنگری: 15 آبان 1395
  • تاریخ پذیرش: 17 آبان 1395
  • تاریخ اولین انتشار: 01 فروردین 1397