بهینه‌سازی تعداد و عرض درب‌های اتوبوس‌ها با استفاده از شبیه‌سازی جریان مسافر در شرایط شلوغی به منظور کاهش زمان توقف

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه اصفهان

2 دانشکده مهندسی عمران و حمل‌ونقل، دانشگاه اصفهان، اصفهان، ایران.

3 دانشگاه زنجان

چکیده

زمان توقف اتوبوس‌ها در خطوط حمل‌ونقل همگانی نقش بسزایی در زمانبندی صحیح و به موقع رسیدن دارد. از آنجا که این زمان متاثر از شیوه سوار و پیاده شدن مسافران دارد، بنابراین می­تواند بخش قابل ملاحظه­ای از کل زمان سفر را به خود اختصاص دهد. زمان توقف در ساعات اوج که تقاضای سفر در بالاترین سطح خود قرار دارد می­تواند به صورت قابل توجهی رشد کند، چرا که در چنین شرایطی شلوغی داخل وسیله می­تواند برخورد و اصطکاک میان مسافران را افزایش دهد و روند سوار و پیاده شدن آن­ها را با کندی مواجه نماید. بدین منظور، مطالعه حاضر قصد دارد با بهره­گیری از ابزارهای شبیه­ساز، جریان مسافران هنگام سوار و پیاده شدن را شبیه­سازی نموده و با تغییر در ویژگی­های وسیله نقلیه از جمله تعداد و عرض درب­ها این فرآیند را تسریع نماید. مطالعه حاضر ضمن معرفی یک ابزار قدرتمند در زمینه شبیه‌سازی جریان مسافران در شرایط شلوغی، نشان داد یکی از راه‌های موثر در کاهش زمان توقف، طراحی فیزیک اتوبوس بصورت بهینه می‌باشد. پس از بررسی سناریوهای مختلف، افزایش تعداد درب‌های اتوبوس به عنوان برترین سناریو شناسایی شد که تا حد امکان قادر است فرآیند سوار و پیاده شدن را تسریع نماید و زمان توقف را 6/37 درصد کاهش دهد. تعریض درب‌ها و تغییر در الگوی سوار و پیاده شدن مسافران نیز می‌توانند به عنوان سایر راهکارها مورد توجه طراحان و سیاست‌گذاران قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing the Bus’s Number of Doors and their Width by means of Passengers’ Flow Simulation under Congestion to Reduce Dwell Time

نویسندگان [English]

  • Amir Mohammad Sadrani 1
  • Ahmad Reza Jafarian Moghaddam 2
  • Mohsen Aboutalebi Esfahani 1
  • Amir Masoud Rahimi 3
1 University of Isfahan
2 Faculty of Civil Engineering and Transportation, University of Isfahan, Isfahan, Iran.
3 University of Zanjan
چکیده [English]

Bus dwell times on urban bus operations play a critical role in correct scheduling and punctuality. Dwell time, since it is the amount of time at which boarding and alighting processes are performed, can account for the vast majority of the total travel time. Under peak load conditions, dwell time can experience a remarkable rise due to the friction existing between on-board passengers. The purpose of this study is to provide a number of strategies which are able to reduce the amount of dwell time. To do this, the previous studies in which the dwell time has been modeled by taking account of on-board crowding are investigated. Moreover, the present study simulates the flow of passengers by means of simulation tools to determine the optimal bus layout, including the optimal number of doors and their width. Being able to predict how a bus design affects passenger flow would consequently be highly valuable during bus development. The results show that the increase in bus doors can lead to a sharp decline by 37.6 percent in dwell time over considering three scenarios. Furthermore, increasing the width of doors and improving boarding policy can reduce bus dwell time.

کلیدواژه‌ها [English]

  • Public transport
  • In-vehicle congestion
  • Dwell time
  • Bus layout
  • Passenger flow simulation
- حبیبیان، م. و کرمانشاه، م. (1391) بررسی اثر متغیرهای حمل‌ونقلی بر تغییر استفاده از سواری شخصی در سفرهای روزانه، فصلنامه مهندسی حمل‌ونقل، دوره سوم، شماره سوم، ص. 198-181.
- سید ابریشمی، س.ا.، خانزاد، ا. زرین مهر، ا.ع. و ممدوحی، ا.ر. (1396) ارائه یک روش ابتکاری برای طراحی خطوط شبکه‌ حمل‌ونقل همگانی با استفاده از الگوریتم تولید مسیر. فصلنامه مهندسی حمل‌ونقل، دوره هشتم، شماره چهارم، ص. 643-654.
- Andelfinger, P., Chen, Y., Su, B., Cai, W., Zehe, D., Eckhoff, D., & Knoll, A. (2018).
- Incremental calibration of seat selection preferences in agent-based simulations of public transport scenarios. Paper presented at the 2018 Winter Simulation Conference (WSC).
- Andersson, T., Wikström, L., & Karlsson, M. (2010). Empirical Studies of Passenger Behaviour and the Creation of Personas. Appendix to D2. 1.2. On Board Passenger Flow Simulation Tool. Report to the EBSF project. Retrieved from
- Cats, O., West, J., & Eliasson, J. (2016). "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems". Transportation Research Part B: Methodological. Vol. 89. No. pp. 43-57.
- Chen, J., Liu, Z., Zhu, S., & Wang, W. (2015). "Design of limited-stop bus service with capacity constraint and stochastic travel time". Transportation research part E: logistics and transportation review. Vol. 83. No. pp. 1-15.
- Denis, M., & Aksyonov, K. (2019). "THE DEVELOPMENT OF A SIMULATION MODELING OF TRAFFIC PRIORITIZATION IN MULTISERVICE ENTERPRISE NETWORKS IN THE ANYLOGIC SYSTEM". No.
- El-Geneidy, A.M., & Surprenant-Legault, J. (2010). "Limited-stop bus service: an evaluation of an implementation strategy". Public Transport. Vol. 2. No. 4. pp. 291-306.
- Fernandez, R. (2011). Experimental study of bus boarding & alighting times. Paper presented at the European Transport Conference.
- Fernández, R., Zegers, P., Weber, G., & Tyler, N. (2010). "Influence of platform height, door width, and fare collection on bus dwell time: laboratory evidence for Santiago de Chile". Transportation research record. Vol. 2143. No. 1. pp. 59-66.
- Gao, L., Liu, M., & Feng, J. (2012). "Delay modeling of Ped-Veh system based on pedestrian crossing at signalized intersection". Procedia-social and behavioral sciences. Vol. 43. No. pp. 530-539.
- Habiban, M., & Kermanshah, M. (2012). "Investigating the Contribution of Transportation Demand Management Policies to Car Commuters’ Mode Changel". Journal of Transportation Engineering. Vol. 3. No. 3. pp. 181-198.
- Helbing, D., & Johansson, A. (2013). "Pedestrian, crowd, and evacuation dynamics". arXiv preprint arXiv:1309.1609. No.
- Itoh, M., & Chua, L. (2019). Memristor cellular automata and memristor discrete-time cellular neural networks. In Handbook of Memristor Networks (pp. 1289-1361): Springer.
- Ji, Y., Gao, L., Chen, D., Ma, X., & Zhang, R. (2018). "How does a static measure influence passengers’ boarding behaviors and bus dwell time? Simulated evidence from Nanjing bus stations". Transportation Research Part A: Policy and Practice. Vol. 110. No. pp. 13-25.
- Karoji, G., Hotta, K., Hotta, A., & Ikeda, Y. (2019). Pedestrian dynamic behaviour modeling. Paper presented at the 24th International Conference on Computer-Aided Architectural Design Research in Asia: Intelligent and Informed, CAADRIA 2019.
- Keith Still, G. (2019). "Crowd Science and Crowd Counting". Impact. Vol. 2019. No. 1. pp. 19-23.
- Lee, J.Y., Lam, W.H., & Wong, S. (2001). Pedestrian simulation model for Hong Kong underground stations. Paper presented at the ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585).
- Levinson, H.S. (1983). Analyzing transit travel time performance.
- Li, S., & Zhang, Y. (2011). Pedestrian delay and HAWK pedestrian treatment. Retrieved from
- Lin, L., Zhang, D., Luo, P., & Zuo, W. (2020). Pedestrian Detection with RPN and Boosted Forest. In Human Centric Visual Analysis with Deep Learning (pp. 47-54): Springer.
- Lu, S., Ma, H., Xin, L., & Zuo, W. (2019). "Lightweight design of bus frames from multi-material topology optimization to cross-sectional size optimization". Engineering Optimization. Vol. 51. No. 6. pp. 961-977.
- Lyubchenko, A., Kopytov, E., Bogdanov, A., & Maystrenko, V. (2020). Discrete-event Simulation of Operation and Maintenance of Telecommunication Equipment Using AnyLogic-based Multi-state Models. Paper presented at the Journal of Physics: Conference Series.
- Mahdavilayen, M. (2019). The Effects of New Bus Designs on Bus Dwell Time and Bus Schedule Adherence when used by Passengers with Mobility Limitations: An Integrated Approach with Human Subject Experiments and Microscopic Traffic Simulation. State University of New York at Buffalo,
- Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., & Theraulaz, G. (2010). "The walking behaviour of pedestrian social groups and its impact on crowd dynamics". PloS one. Vol. 5. No. 4.
- Nappi, M.M.L., Moser, I.R., & Souza, J.C. (2019). Collective Phenomena in Pedestrian Crowds and Computational Simulation. Paper presented at the Operations Management for Social Good: 2018 POMS International Conference in Rio.
- Ren, G., Zhou, Z., Wang, W., Zhang, Y., & Wang, W. (2011). "Crossing behaviors of pedestrians at signalized intersections: observational study and survey in China". Transportation research record. Vol. 2264. No. 1. pp. 65-73.
- Rexfelt, O., Schelenz, T., Karlsson, M., & Suescun, A. (2014). "Evaluating the effects of bus design on passenger flow: Is agent-based simulation a feasible approach?". Transportation Research Part C: Emerging Technologies. Vol. 38. No. pp. 16-27.
- Ronald, N., Sterling, L., & Kirley, M. (2007). "An agent-based approach to modelling pedestrian behaviour". International Journal of Simulation. Vol. 8. No. 1. pp. 25-38.
- Rudloff, C., Bauer, D., Matyus, T., & Seer, S. (2011). Mind the gap: Boarding and alighting processes using the social force paradigm calibrated on experimental data. Paper presented at the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).
- Seyed Abrishami, S.E., Khanzad, I., Zarin Mehr, A.A., & Mamdouhi, A.R. (2017). "A Heuristic Method for Public Transportation Network Design using Route Generation Algorithm". Journal of Transportation Engineering. Vol. 8. No. 4. pp. 643-654.
- Sun, L., Tirachini, A., Axhausen, K.W., Erath, A., & Lee, D.-H. (2014). "Models of bus boarding and alighting dynamics". Transportation Research Part A: Policy and Practice. Vol. 69. No. pp. 447-460.
- Tian, Z., & Xu, F. (2006). Modeling the effects of pedestrians on intersection capacity and delay with actuated signal control. Paper presented at the Proc., 5th International Symposium on Highway Capacity.
- Tirachini, A. (2013a). "Bus dwell time: the effect of different fare collection systems, bus floor level and age of passengers". Transportmetrica A: Transport Science. Vol. 9. No. 1. pp. 28-49.
- Tirachini, A. (2013b). "Estimation of travel time and the benefits of upgrading the fare payment technology in urban bus services". Transportation Research Part C: Emerging Technologies. Vol. 30. No. pp. 239-256.
- Tirachini, A., & Hensher, D.A. (2012). "Multimodal transport pricing: first best, second best and extensions to non-motorized transport". Transport Reviews. Vol. 32. No. 2. pp. 181-202.
- Tirachini, A., Hensher, D.A., & Rose, J.M. (2014). "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding". Transportation Research Part B: Methodological. Vol. 61. No. pp. 33-54.
- Ullah, H., Ullah, M., & Uzair, M. (2019). "A hybrid social influence model for pedestrian motion segmentation". Neural Computing and Applications. Vol. 31. No. 11. pp. 7317-7333.
- UMEZAWA, M., Asanuma, H., Gunji, Y., & Ito, O. (2020). Pedestrian protecting device for vehicle and vehicle including same. In: Google Patents.
- Werner, T., & Helbing, D. (2003). The social force pedestrian model applied to real life scenarios. Paper presented at the Pedestrian and Evacuation Dynamics 2003. Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics.
- Yang, J., Deng, W., Wang, J., Li, Q., & Wang, Z. (2006). "Modeling pedestrians’ road crossing behavior in traffic system micro-simulation in China". Transportation Research Part A: Policy and Practice. Vol. 40. No. 3. pp. 280-290.
- Zhang, Q., Han, B., & Li, D. (2008). "Modeling and simulation of passenger alighting and boarding movement in Beijing metro stations". Transportation Research Part C: Emerging Technologies. Vol. 16. No. 5. pp. 635-649.
- Zhao, Y. (2012). Exploration of pedestrian gap acceptance at twsc intersections using simulation. Paper presented at the Proceedings of the ITE Western District Annual Meeting Technical Paper Compendium, Santa Babara.