کاربرد اتوماتای سلولی نامنظم فازی در رتبه‌بندی ایمنی جاده‌ها

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، پژوهشگاه برق و فناوری اطلاعات، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

2 استادیار، پژوهشگاه برق و فناوری اطلاعات، سازمان پژوهش‌های علمی و صنعتی ایران، تهران

3 دانشیار، پژوهشگاه برق و فناوری اطلاعات، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

چکیده

پیچیدگی مسائل دنیای واقعی همواره در حال افزایش است و بسیاری از مسائل دنیای واقعی را نمی‌توان با روش‌های فعلی مدل‌سازی کرد. به همین دلیل، برای غلبه بر چالش‌ها و کاستی‌های موجود باید همواره مدل‌های محاسباتی جدیدی ارائه شود تا با استفاده از آن‌ها بتوانیم مسائل مختلف را حل کنیم. برخی از مسائل دنیای واقعی ماهیت گراف دارند و استفاده از اتوماتای سلولی نامنظم در این‌گونه مسائل مطلوب خواهد بود؛ اما این اتوماتا قادر به بازنمایی مفاهیم نادقیق فازی نیست. در همین راستا، در این مقاله یک مدل محاسباتی جدید بنام اتوماتای سلولی فازی نامنظم معرفی خواهد شد. مدل پیشنهادی در این مقاله که تلفیقی از اتوماتای سلولی فازی و اتوماتای سلولی نامنظم است، باهدف ترکیب مزایای هردوی این مدل‌ها در یک مدل واحد و کاستن از معایب آن‌ها در حالت تکی معرفی‌شده است. درنهایت، از مدل پیشنهادی برای حل یک مسئله‌ی کاربردی دنیای واقعی بنام مسئله‌ی رتبه‌بندی ایمنی جاده‌ها استفاده می‌شود. نتایج به‌دست‌آمده از شبیه‌سازی‌های انجام‌شده در این مقاله نشان‌دهنده‌ی آن است که مدل پیشنهادی قادراست قطعات مختلف جاده‌ها را به لحاظ ایمنی با دقت بالا رتبه‌بندی نماید. بر اساس نتایج آزمایش‌های انجام‌شده مدل پیشنهادی در مقایسه با داده‌های واقعی توانسته به‌دقت %75 درصد تخمین ایمنی جاده‌ها دست یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Irregular Fuzzy Cellular Automaton for ranking the road safety

نویسندگان [English]

  • mostafa kashani 1
  • saeid Gorgin 2
  • Seyed Vahab Shojaedini 3
1 Ph.D. Student, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
2 Assistant Professor, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
3 Associate Professor, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
چکیده [English]

As the complexity of the real-world problems increases, many of them can’t be modeled using current approaches. Therefore, to overcome the current challenges and deficits, new computational models should be constantly presented for solving mentioned problems. Many real-world problems are graph-like in nature, for which irregular cellular automaton (ICA) is a desirable tool. However, ICA is not able to represent the fuzzy concepts. To this end, in this paper, a new computational model called irregular fuzzy cellular automaton is proposed. To this end, the present paper introduces a new computational model, namely fuzzy irregular cellular automata. The proposed model is a combination of fuzzy cellular automata and irregular fuzzy cellular automata, with the aim to combine the advantages of the both models and to alleviate their disadvantages. The proposed model is then used for solving the real-world road safety ranking problem. The computer simulations are conducted to show the effectiveness of the proposed mode for rating different sections of roads. Experimental results showed that the proposed method could estimate the road safety problem with 75% accuracy.

کلیدواژه‌ها [English]

  • Cellular Automata
  • Road accidents
  • Road rankings
  • road agent
- Al-Nuaimi, A. N. (2019) “An application of data mining techniques to determine the effectiveness of multiple road safety countermeasures”, [Doctoral dissertatio]. University of Birmingham.
 
- Besussi, E., Cecchini, A., and Rinaldi, E. (1998) “The diffused city of the Italian North-East: Identification of urban dynamics using cellular automata”, urban models, Computers, Environment and Urban Systems, Vol.22, No.5, pp.497–523.
 
- Brijs, K., Cuenen, A., Brijs, T., Ruiter, R. A. C., and Wets, G. (2014), “Evaluating the effectiveness of a post-license education program for young novice drivers in Belgium”, Accident Analysis and Prevention, Vol.66, pp.62–71. https://doi.org/10.1016/j.aap.2014.01.015
 
- Chen, F., Wang, J., and Deng, Y. (2015), “Road safety risk evaluation by means of improved entropy TOPSIS–RSR”, Safety Science, Vol.79, pp.39–54.
 
- Couclelis, H. (1985), “Cellular worlds: A framework for modeling micro—Macro dynamics”, Environment and Planning A, Vol.17, No. 5, pp.585–596.
 
- Egilmez, G., and McAvoy, D. (2013), “Benchmarking road safety of U.S. states: A DEA-based Malmquist productivity index approach”, Accident Analysis and Prevention, Vol.53,pp.55–64. https://doi.org/10.1016/j.aap.2012.12.038
 
- Elvik, R. (2019), “How to trade safety against cost, time and other impacts of road safety measures”. Accident Analysis & Prevention, Vol.127, pp.150–155.
 

- Han-TaoZhao,ShuoYang,Xiao-XuChen. (2016) ,“Cellular automata model for urban road traffic flow considering pedestrian crossing street”, Physica A: Statistical Mechanics and its Applications

Volume 462, 15 November 2016, Pages 1301-1313

 
- Hughes, B., Anund, A., and Falkmer, T. (2019), “The relevance of Australasian road safety strategies in a future context”, Journal of the Australasian College of Road Safety, Vol.30, No.1, pp.34–45.
 
- Hüllermeier, E. (2015), “Does machine learning need fuzzy logic?” Fuzzy Sets and Systems, Vol.281, pp.292–299.
 
- Kashani, M., Gorgin, S., and Shojaedini, S. V. (2020), “A fuzzy irregular cellular automata-based method for the vertex colouring problem”, Connection Science, Vol.32, No.1, pp.37–52. https://doi.org/10.1080/09540091.2019.1650329
 
- Lee, C.-S., and Wang, M.-H. (2011), “A fuzzy expert system for diabetes decision support application”, IEEE Transactions On Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.41, No.1, pp.139–153.
 
- Mikšová, D., Elgner, J., Valach, O., and Ambros, J. (2018), “Rating road safety performance of Czech regions using composite indicators”, Advances in Transportation Studies, Vol.46, pp.153–162.
 
- Obregón-Biosca, Saúl. A., Betanzo-Quezada, E., Romero-Navarrete, J. A., and Ríos-Nuñez, M. (2018), “Rating road traffic education”, Transportation Research Part F: Traffic Psychology and Behaviour, Vol.56, pp.33–45. https://doi.org/10.1016/j.trf.2018.03.033
 
- Openshaw, S. (1984), “Ecological Fallacies and the Analysis of Areal Census Data”, Environment and Planning A: Economy and Space, Vol.16, No.1, pp.17–31. https://doi.org/10.1068/a160017
 
- Opricovic, S. (2011), “Fuzzy VIKOR with an application to water resources planning”, Expert Systems with Applications, Vol.38, No. 10, pp.12983–12990.
 
- P. Korček, L. Sekanina, and O. Fušík. (2011), “A scalable cellular automata based microscopic traffic simulation”, IEEE Intelligent Vehicles Symposium (IV), pp.13–18. https://doi.org/10.1109/IVS.2011.5940393
 
- Pritchard, M. S. (2019), “Safety, security, and serviceability in road engineering”, Accident Analysis & Prevention, Vol.127, pp.172–176. https://doi.org/10.1016/j.aap.2019.02.026
 
- Q. Yu, N. An, T. Wang, S. Leng, and Y. Mao. (2013), “AODV-ECA: Energy-efficient AODV routing protocol using cellular automata in wireless sensor networks”, Vol.2, pp.29–33.
 
- Raghavan, R. (1993), “Cellular automata in pattern recognition”, Information Sciences, Vol.70,No.1,pp.145–177. https://doi.org/10.1016/0020-0255(93)90052-N
 
- S. Maerivoet, Bart De Moor.(2005), “Cellular automata models of road traffic”, Physics Reports,Volume 419, Issue 1, November 2005, Pages 1-64
 
- S. Nandi, B. K. Kar, and P. Pal Chaudhuri. (1994), “Theory and applications of cellular automata in cryptography”, IEEE Transactions on Computers, Vol.43, No.12, pp.1346–1357. https://doi.org/10.1109/12.338094
 
- Saffiotti, A. (1997), “The uses of fuzzy logic in autonomous robot navigation”, Soft Computing, Vol.1, No.4, pp.180–197.
 
- Schiff, J. L. (2005), “Introduction to cellular automata”.
 
- Schlögl, M., and Stütz, R. (2019), “Methodological considerations with data uncertainty in road safety analysis”, Road Safety Data Considerations, Vol.130, pp.136–150. https://doi.org/10.1016/j.aap.2017.02.001
 
- Shen, Y., Li, T., Hermans, E., Ruan, D., Wets, G., Vanhoof, K., and Brijs, T. (2010), “A hybrid system of neural networks and rough sets for road safety performance indicators”, Soft Computing, Vol.14, No.12, pp.1255–1263.
 
- Song, H., Miao, C., Roel, W., Shen, Z., and Catthoor, F. (2010), “Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series”, IEEE Transactions On Fuzzy Systems, Vol.18, No.2, pp.233–250.
 
- Steenberghen, Thérèse, Aerts, K., and Thomas, I. (2010), “Spatial clustering of events on a network”, Tourism and Climate Change, Vol.18,No.3,pp.411–418. https://doi.org/10.1016/j.jtrangeo.2009.08.005
 
- Stevens, D. (2005), “Integration of an irregular cellular automata approach and geographic information systems for high-resolution modelling of urban growth”, Department of Geography-Simon Fraser University.
 
- Weekley, J., Barrell, J., and McCarthy, T. (2016), “Developing a Road Safety Review Tool to Identify Design Standard and Safety Deficits on High Risk Road Sections”, Transport Research Arena TRA2016, Vol.14,pp.4130–4139. https://doi.org/10.1016/j.trpro.2016.05.384
 
- Younes Regraguia , Najem Moussa(2018),“A Cellular Automata Model for Urban Traffic with Multiple Roundabouts”, Elsevier,2018, HAL Id: hal-01773462.
- Yamada, I., and Thill, J.-C. (2010), “Local Indicators of Network-Constrained Clusters in Spatial Patterns Represented by a Link Attribute”, Annals of the Association of American Geographers, Vol.100, No.2, pp.269–285. https://doi.org/10.1080/00045600903550337
 
- Zadeh, L. A. (1965), “Fuzzy sets”, Information and Control, Vol.8, No.3, pp.338–353.