Estimation of Pavement Roughness Based on Surface Distresses Using Artificial Neural Network (case study: Iran’s arterial roads)

Document Type : Research Paper

Authors

1 Associate Professor, Faculty of Civil Engineering, K.N. Toosi University of Technology

2 Faculty of Technical and Engineering, Islamic Azad University South Tehran Branch

3 Environmental Engineering Faculty, Tarbiat Modares University

Abstract

Today, roads are considered among the main assets of each country so there is a need for a specific mechanism for their preservation and maintenance. Hence, the pavement management system, as an effective tool for decision-making and identifying effective and economical strategies, is used in pavement evaluation and treatment and also in maintaining roads in acceptable levels. In order to implement this system, having access to accurate measurement of different pavement indices, is vital. The goal of this study is identifying the effect of pavement distresses on the roughness and establishing a correlation between the two parameters to be used for evaluating the International Roughness Index (IRI) and roughness growth rate. In order to do this, using the Laser Crack Measurement System (LCMS), the roughness index and pavement distresses are measured in 10-meter length sections with lateral resolution of 1mm in several arterial roads of Iran. After the preliminary analyze of the LCMS output, pavement distresses with higher impact on roughness were identified and then, using artificial neural network (ANN), a correlation was established between IRI and pavement distresses. The relationship showed a correlation coefficient of 0.70. Putting this model into use, is a low-cost approach for road agencies to evaluate the roughness index as well as the roughness growth rate based on pavement distresses in network level. This in part would lead to better policy making and more efficient maintenance and treatment activities.

Keywords


- سازمان مدیریت و برنامه‌ریزی کشور، (1390) "آیین نامه روسازی آسفالتی راه‌های ایران (تجدید نظر اول)"، تهران، ایران.
 
- صوفی، س.، کریمی، م. و عباس قربانی، م. (1396) "ارزیابی خودکار خرابی‌های سطحی روسازی با استفاده از دستگاه اسکنر سطح جاده (LCMS)"، اولین کنفرانس ملی مهندسی راه و ترابری دانشگاه گیلان، گیلان، ایران.
 
- فخری، م. (1388) "حدود شاخص بین المللی ناهمواری (IRI) برای راه‌های ایران" ، پژوهشکده حمل ونقل وزارت راه و ترابری.
 
- فخری، م.، دزفولیان، ر. و برزگران، ج. (1396) "ارائه گزینه مناسب نگهداری و بهسازی روسازی آسفالتی با بکارگیری شاخص‌های ارزیابی ناهمواری و خرابی سطحی"، پژوهشنامه حمل ونقل، دوره 14، شماره 4، 211-223.
- قاسم‌زاده، ح. و جعفر نژاد، م. (1396) "پیش بینی عملکرد روسازی با تلفیق مدل خانواده و شبکه عصبی (مطالعه موردی: معابر شهر ساری)"، فصلنامه مهندسی حمل ونقل، دوره 9، ویژه نامه روسازی، 12-1.
 
- نوری، ر.، اشرفی، خ. و اژدرپور، ا. (1387) "مقایسه کاربرد روش‌های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل ‌مؤلفه‌های اصلی برای پیش‌بینی غلظت میانگین روزانه کربن‌مونوکسید: بررسی موردی شهر تهران"، فیزیک زمین و فضا ، دوره 34، شماره 10، 136-151.
 
- شفابخش، غ.، محمدی، م.، میرزانمدی، ر. (1393) "تحلیل حساسیت عوامل تاثیرگذار بر رضایت عابرین از پیاده‌روی در تهران"، فصلنامه مهندسی ترافیک، دوره 14، شماره 56، 5-12.
 
- Arhin, A., Williams, N., Ribbiso, A. and Anderson, F. (2015) “Predicting Pavement Condition Index Using International Roughness Index in a Dense Urban Area”, Journal of Civil Engineering Research, Vol. 5, No.1, pp. 10-17.
 
- ARA, (2004) “Guide for Mechanisticempirical Design of New and Rehabilitated Pavement Structures”, National Cooperative Highway Research Program.
 
- ASTM D6433-07, (2018) “Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys”, ASTM International, West Conshohocken, PA.
 
- Chandra, S., Sekhar, C.R. and Bharti, A.K. (2013) “Relationship between Pavement Roughness and Distress Parameters for Indian Highways”, Journal of Transportation Engineering, Vol. 139, No. 5, pp.731-739.
 
- Dewan, S. and Smith, R., (2002) “Estimating International Roughness Index from Pavement Distresses to Calculate Vehicle Operating Costs for the San Francisco Bay Area”, Transportation Research Record: Journal of the Transportation Research Board, 1816(1), pp. 65-72.
- Harrison, F. and Park, H. A. (2008) “Comparative Performance Measurement Pavement Smoothness-NCHRP 20-24(37B)”, AASHTO.
 
- Hecht-Nielsen, R. (1987) “Kolmogorov’s Mapping Neural Network Existence Theorem”, In Proceedings of the International Conference on Neural Networks, New York, IEEE Press, Vol. 3, pp. 11–14.
 
- Laurent, J., Savard, Y. and Lefebvre, D. (2014) “3D Laser Road Profiling for the Automated Survey of Road Surface Conditions and Geometry”, IRF, 30.
 
- Mactutis, J. A., Sirous H. A. and Weston, C. O. (2000) “Investigation of relationship between roughness and pavement surface distress based on WesTrack project” Transportation Research Record, Vol. 1699, No. 1, TRB, National Research council, Washington, D.C., pp 107-113.
 
- Múčka, P. (2017) “International Roughness Index Specifications around the World”, Road Materials and Pavement Design, Road Materials and Pavement Design, Vol. 18, No. 4, pp. 929-965.
 
- Park, K., Thomas, N. E. and WayneLee, K. (2007) “Applicability of the International Roughness Index as a Predictor of Asphalt Pavement Condition”, Journal of Transportation Engineering, Vol. 133, No. 7, pp. 706-709.
 
- Robinson, R., Danielson, U. and Snaith, M. (1998) “Road Maintenance Management-Concepts and System”, Basingstoke: Macmillan.
 
- Robbins, M. and Tran, H. (2016) “A Synthesis Report: Value of Pavement Smoothness and Ride Quality to Roadway Users and the Impact of Pavement Roughness on Vehicle Operating Costs”, National Center for Asphalt Technology (NCAT) at Auburn University, NCAT Report, 16-03.
 
- Sayers, M.W., Gillespie, T.D. and Paterson, W.D.O. (1986) “Guidelines for Conducting and Calibrating Road Roughness Measurements”, Technical Paper No. 46, The World Bank. Washington, DC.
 
- Sayers, M.W. and Karamihas, S. M. (1998) “The Little Book of Profiling”, Transportation Research Institute, University of Michigan, US.
 
- Schleppi, B.L. and Roberts, J.H. (2002) “Improving Rideability at a Newly Constructed Pavement Bridge Interface a Case Study”, Journal of the Transportation Research Board, No. 186: 10-16M.
 
- Schram, S. and Abdelrahman, M. (2006) “Improving Prediction Accuracy in Mechanisticempirical Pavement Design Guide”, Transportation Research Record, Vol. 1947 (Rigid and Flexible Pavement Design), No. 1, pp. 59-68.
 
- Serigos, P. A., Prozzi, J. A., Smit, A. F. and Murphy, M. R. (2016) “Evaluation of 3D Automated Systems for the Measurement of Pavement Surface Cracking”, Journal of Transportation Engineering, Vol. 142, No. 6, 05016003.
- Vidya, R., Santhakumar, S.M. and Mathew, S. (2013) “Estimation of IRI from PCI in Construction Work Zones”, ACEE International Journal on Civil and Environmental Engineering, Vol. 2, No. 1, pp. 322-3310.
 
- Zhang, W.J. (2002) “An Artificial Neural Network Approach to Mechanism Kinematic Chain Isomorphism Identification, Mechanism and Machine Theory, pp. 549–551.