Investigation on the effect of geometrical and mechanical characterization of pavement layers on fatigue life of HMA overlay

Document Type : Research Paper

Authors

1 School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

2 Iran University of Science and Technology

3 student/Iran University of Science and Technology

Abstract

Cracking of asphalt layers and pavements is one of the most common modes of failure in roads and highways, which can significantly increase the costof repair and rehabilitation. Since asphalt mixtures can behave as brittle materials at low temperature,brittle fracture and crack growth in pavements is usually observed at the surface of roads located in cold regions. Traffic loading (due to the weight of moving vehicles) and thermal stress (induced by daily or seasonal variations of field temperature), are two major parameters affecting nucleation and propagation of cracks inside the pavements. Reflective cracking is often observed in the overlays, and the growth of such cracks is an important problem in field. In this paper, a multi-layer asphalt pavement containing a reflective crack is analyzed and fatigue life, crack path and effective stress intensity factor are determined. Using extensive two-dimensional finite element analyses, the effect of modulus and thickness of overlay and existing asphalt layer on fatigue life of asphalt pavement were investigated. The results demonstrate that exceeding the thickness of overlay from a special amount causes abrupt increase in the fatigue life of asphalt pavement and also the HMA stiffness were the most influencing factors on the pavement fatigue life. Among the mechanical and geometrical properties of asphalt layers, overlay thinness has the most impact on the crack growth path. By increasing overlay thickness the crack grow path will have a smaller deviation from vertical direction.

Keywords

Main Subjects


-Aliha, M. R. M., Fazaeli, H., Aghajani, S. and Nejad, F. M. (2015) “Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures”, Construction and Building Materials, Vol. 95, pp. 545-555.
-Ameri, M., Mansourian, A., Khavas, M. H., Aliha, M. R. M. and Ayatollahi, M. R. (2011) “Cracked asphalt pavement under traffic loading–A 3D finite element analysis”, Engineering Fracture Mechanics, Vol. 78, No.8, pp.1817-1826.
-Ameri, M., Nowbakht, S., Molayem, M. and Aliha, M. R. M. (2016) “Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes”, Fatigue & Fracture of Engineering Materials & structures, Vol. 39 No.7, pp. 896-906.
-Erdogan, F. and Sih, G. C. (1963) “On the crack extension in plates under plane loading and transverse shear”, Journal of basic engineering, Vol.85, No.4, pp.519-527.
-Fakhri, M., Farokhi, M. and Kheiry, P. T. (2009) “Modeling of top-down cracking (TDC) propagation in asphalt concrete pavements using fracture mechanics theory”,  Adv Test Charact Bituminous Mater II, pp. 681-692. (Book article)
-Huang, B., Shu, X. and Zuo, G. (2013)  “Using notched semi-circular bending fatigue test to characterize fracture resistance of asphalt mixtures”,  Engineering Fracture Mechanics,Vol. 109, pp.78-88.
-Hu, S., Hu, X., Zhou, F. and Walubita, L. (2008) “SA-CrackPro: New finite element analysis tool for pavement crack propagation”, Transportation Research Record: Journal of the Transportation Research Board, Vol.2068, pp. 10-19.
-Kim, H., Wagoner, M. P. and Buttlar, W. G. (2009)  “Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model”,  Construction and Building Materials, Vol.23, No.5, pp.2112-2120.
-Li, X. and Marasteanu, M. (2010) “The fracture process zone in asphalt mixture at low temperature”, Engineering Fracture Mechanics, Vol. 77, No.7, pp.1175-1190.
Ling, J., Tao, Z., Qian, J. and Fu, W. (2018) “Investigation the influences of geotextile on reducing the thermal reflective cracking using XFEM”, International Journal of Pavement Engineering, Vol.19, No.5, pp.391-398.
-Luo, H., Zhu, H. P., Miao, Y. and Chen, C. Y. (2010) “Simulation of top-down crack propagation in asphalt pavements”,  Journal of Zhejiang University-Science A, Vol.11, No.3, pp. 223-230.
- Paris, P. and Erdogan, F. (1963)  “A critical analysis of crack propagation laws”,  Journal of Basic Engineering, Vol. 85, No.4, pp.528-533.
-Scarpas, A., De Bondt, A. H., Molenaar, A. A. A. and Gaarkeuken, G. (1996, September) “Finite elements modelling of cracking in pavements”,  In RILEM proceedings, pp. 82-91. Chapman & Hall.
Solaimanian, M., Chehab, G. and Medeiros, M. (2016)  “Evaluating resistance of hot mix asphalt overlays to reflective cracking using geocomposites and accelerated loading. In The Roles of Accelerated Pavement Testing in Pavement Sustainability, Cham: 16 September 2016.
-Williams, M. L. (1957) “On the stress distribution at the base of a stationary crack. I. appl. Corpus ID: 5624103
-Yang, B., Huang, Q. S., Xiong, B. and Xu, H. (2011) “Analysis on the Effect of Parameters Variation on Dynamic Stress Intensity Factor of Asphalt Overlay Reflective Crack”, Applied Mechanics and Materials Vol. 52, pp. 1092-1096. Trans Tech Publications.
-Zhao, Y., Ni, F. and Zhou, L. (2011) “Viscoelastic response of reflective cracking under dynamic vehicle loading in asphalt concrete pavements”, In ICCTP 2011: Towards Sustainable Transportation Systems, pp. 3278-3297.
- طاهرخانی، حسن و خالقی، حسین (1395) ”بررسی تاثیر فشار باد لاستیک و وزن محور بر روی پاسخ روسازی ترک خورده با استفاده از روش اجزا محدود" ،  فصلنامه مهندسی حمل و نقل سال 8، شماره اول، پاییز 95،ص 194-175
- فخری،  منصور و کریمی ابیانه، پیمان (1394) " بررسی نحوه گسترش ترک های خستگی در روسازی آسفالتی در اثر تغییر دما، با استفاده از فرضیه مکانیک شکست" مهندسی زیرساخت های حمل و نقل، سال اول، شماره دوم،ص 62-55
- محمدعلیها،  محمد رضا، بهبهانی ،حمید  و جبالبارزی مجید، (1395) "بررسی عددی پارامترهای شکست ترک انعکاسی در روسازی آسفالتی تحت بار ترافیکی" مهندسی عمران شریف، دوره2-32، شماره 1/1،ص 130-123