ارائه روشی برای افزایش عبوردهی شبکه خیابان‌ها مبتنی بر نظریه جریان بیشینه در گراف‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه فنآوری اطلاعات، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 استادیار، گروه هوش مصنوعی، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 دانش آموخته کارشناسی ارشد، گروه سیستم های اطلاعات مکانی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

با افزایش جمعیت و وسایل نقلیه در کلان شهر ها، خیابان ها با مشکل ترافیک های سنگین در برخی مناطق روبرو هستند. راه حل های زیادی برای رفع این مشکل ارائه شده است که عموماً از شبیه سازی ترافیک شهری در آنها استفاده شده است. در این مقاله با استفاده از شبیه سازی، مدلی برای افزایش عبور دهی شبکه خیابان ها ارائه شده است. در اینجا عبوردهی، مجموع مسافت طی شده توسط تمامی خودروها در کل شبکه خیابان ها، تعریف میشود که هدف افزایش این شاخص در شبکه ای از خیابان ها، است. در مدل توسعه داده شده، معابر به صورت یک گراف، مدل و پردازش شده اند. در این مطالعه، برای دستیابی به هدف تعریف شده، دو مسئله بررسی شده است: اشباع خیابان ها و عدم تناسب در تعداد خودرو های خروجی در تقاطع ها. در این مدل، برای حل مشکل اول، حد آستانه ای برای میزان تراکم خودرو ها در خیابان ها محاسبه شده تا از اشباع بیش از حد خیابان ها توسط خودروها و درنتیجه کاهش بیش از حد سرعت میانگین خودرو ها، جلوگیری شود. برای حل مشکل دوم، تعداد خودروهای خروجی از تقاطع بر اساس نسبتی که از میزان تقاضای ورودی ها به تقاطع بدست می آیند، محاسبه میگردد. در این مقاله بدلیل حجم بالای محاسبات از یک شبکه شبیه سازی شده برای انجام پردازش ها استفاده شده است. نتایج شبیه‌سازی عملکرد مناسب مدل پیشنهادی را نشان می‌دهند به‌نحوی‌که عبوردهی شبکه خیابان ها ، به میزان 2.38 برابر نسبت به حالت معمولی بهبود پیدا می‌کند.

کلیدواژه‌ها

موضوعات


- Bonzani, I. )2007( “Hyperbolicity analysis of a class of dynamical systems modelling traffic flow”, Applied Mathematics Letters, Vol. 20, No. 8, pp. 933–937.
- Bowman, C. N.  and Miller J. A. )2016( “Modeling traffic flow using simulation and big data analytics”, Proceedings of the 2016 Winter Simulation Conference, pp. 1206–1217.
- De Nunzio, G., De Wit, C. C., Moulin, P. and Di Domenico, D. (2016) “Eco-driving in urban traffic networks using traffic signals information”, International Journal of Robustand Nonlinear Control, Vol. 26, No. 6, pp. 1307–1324.
- Dezani, H., Bassi, R. D. S., Marranghello, N., Gomes, L., Damiani, F. and Nunes da Silva, I. )2014( “Optimizing urban traffic flow using genetic algorithm with petri net analysis as fitness function”, Neurocomputing, Vol. 124, pp. 162–167.
- Errampalli, M. and Kayitha, R. )2016( “Traffic management plan for port blair city, india”, transportation research procedia, Vol. 17, pp. 548–557.
- Ford, L. R. and Fulkerson, D. R. )1963( “Flows in networks”, Journal of the Franklin Institute, Vol. 275, pp. 152.
- Giannakos, L., Mintsis, E., Basbas, S., Mintsis, G. and Taxiltaris, C. (2017) “Simulating traffic and environmental effects of pedestrianization and traffic management. a comparison between static and dynamic traffic assignment”, Transportation Research Procedia, Vol. 24, No. 2016, pp. 313–320.
- Gupta, A. K. and Redhu, P. (2014) “Analysis of a modified two-lane lattice model by considering the density difference effect”, Communications in Nonlinear Science and Numerical Simulation, Vol. 19, No. 5, pp. 1600–1610.
- Hajiahmadi, M., Haddad, J., De Schutter, B.  and Geroliminis, N. (2013) “Optimal hybrid macroscopic traffic control for urban regions: perimeter and switching signal plans controllers”, European Control Conference (Ecc), Vol.23, No. 2, pp. 3500–3505.
- Korfant, M. and Gogola, M. (2017) “Possibilities of using traffic planning software in Bratislava”, Procedia Engineering Vol. 192, pp. 433–438.
- Krajzewicz, D., Bonert, M. and Wagner, P. (2006) “The open source traffic simulation package SUMO”, RoboCup 2006 Infrastructure Simulation Competition, pp. 1–5.
- moore, e. j., kichainukon, w. and phalavonk, u. (2013) “Maximum flow in road networks with speed-dependent capacities - Application to Bangkok traffic”, Songklanakarin Journal of Science and Technology, Vol. 35, No. 4, pp. 489–499.
- Peng, G. (2013) “A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system”, Nonlinear Dynamics, Vol. 73, No. 1, pp. 1035–1043.
- Rakkesh, S. T., Weerasinghe, A. R. and Ranasinghe, R. A. C. (2016) “Effective urban transport planning using multi-modal traffic simulations approach”, 2nd International Moratuwa Engineering Research Conference, MERCon 2016, pp. 303–308.
- Redhu, P. and Gupta, A. K. (2015a) “Delayed-feedback control in a lattice hydrodynamic model”, Communications in Nonlinear Science and Numerical Simulation, Vol. 27, No. 1–3, pp. 263–270.
- Redhu, P. and Gupta, A. K. (2015b) “Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing”, Physica A: Statistical Mechanics and Its Applications, Vol. 421, pp. 249–260.
- Redhu, P. and Gupta, A. K. (2016) “Effect of forward looking sites on a multi-phase lattice hydrodynamic model”, Physica A: Statistical Mechanics and Its Applications, Vol. 445, pp. 150–160.
- Tang, T. Q., Huang, H. J., Wu, W. X. and Wu, Y. H. (2015) “Analyzing trip cost with no late arrival under car-following model”, Measurement: Journal of the International Measurement Confederation, Vol. 64, pp. 123–129.
- Tang, T. Q., Li, J. G., Yang, S. C. and Shang, H. Y. (2015) “Effects of on-ramp on the fuel consumption of the vehicles on the main road under car-following model”, Physica A: Statistical Mechanics and Its Applications, Vol. 419, pp. 293–300.
- Tang, T. Q., Shi, W. F., Shang, H. Y. and Wang, Y. P. (2014) “An extended car-following model with consideration of the reliability of inter-vehicle communication”, Measurement: Journal of the International Measurement Confederation, Vol. 58, pp. 286–293.
- Tang, T. Q., Xu, K. W., Yang, S. C.  and Shang, H. Y. (2015) “Influences of battery exchange on the vehicle’s driving behavior and running time under car-following model”, Measurement: Journal of the International Measurement Confederation, Vol. 59, pp. 30–37
- Tang, T. Q., Yu, Q., Yang, S. C. and Ding, C.  (2015) “Impacts of the vehicle’s fuel consumption and exhaust emissions on the trip cost allowing late arrival under car-following model”, Physica A: Statistical Mechanics and Its Applications, Vol. 431, pp. 52–62.
- Thonhofer, E., Palau, T., Kuhn, A., Jakubek, S. and Kozek, M. (2018) “Macroscopic traffic model for large scale urban traffic network design”, Simulation Modelling Practice and Theory, Vol. 80, pp. 32–49.
- Tonguz, O. K., Viriyasitavat, W. and Fan, B. (2009) “Modeling urban traffic: a cellular automata approach”, Communications Magazine, IEEE, Vol. 47, No. 5, pp. 142–150.
- Wang, C., Li, X., Zhou, X., Wang, A. and Nedjah, N. (2016) “Soft computing in big data intelligent transportation systems”, Applied Soft Computing, Vol. 38, pp. 1099–1108.
- Yisheng, L., Duan, Y. and Kang, W. (2015) “Traffic flow prediction with big data : a deep learning approach”, IEEE Transactions on Intelligent Transportation Systems, Vol. 16, No. 2, pp. 865–873.
- عباسی، سید حمید و مهدی یعقوبی (2012) “یک روش پیشنهادی برای انتخاب گره اتصال برای بهبود نتایج تخصیص ترافیک،مطالعه موردی شهر مشهد”, فصلنامه مهندسی حمل و نقل، سال چهارم، شماره سوم، ص. 259-270.