یک مدل ریاضی دو سطحی برای مساله طراحی شبکه حمل و نقل مواد خطرناک با در نظر گرفتن ملاحظات امدادرسانی

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

امروزه حمل و نقل مواد خطرناک (هزمت) و امداد­­رسانی در زمان حادثه ناشی از آن، بسیار حائز اهمیت است. در این مقاله مدلی دو سطحی برای طراحی شبکه حمل و نقل مواد خطرناک ارائه شده است. سطح اول مدل دو سطحی ارائه شده مقامات نظارتی (دولت) هستند و به دنبال مکان­­ یابی ایستگاه های امداد رسانی از بین مکان های کاندید، خرید تجهیزات این ایستگاه ها با در نظر گرفتن بودجه در دسترس، احداث مسیرهایی در شبکه برای عبور جریان کالاهای خطرناک و حداکثر سازی میزان پوشش مسیرها در صورت وقوع حادثه هستند. سطح دوم آن شرکت های حمل کننده مواد خطرناک هستند و به دنبال حداقل سازی هزینه های حمل و نقل خود با توجه به مسیرهای احداث شده از جانب دولت هستند. با در نظر گرفتن شرایط بهینگی، مدل دو سطحی با روش کوهن – تاکر (KKT) به تک سطحی تبدیل شده است. در بخش نتایج محاسباتی، مدل ارائه شده از جنبه های مختلف و متعددی مورد بحث و عملکرد آن مورد ارزیابی قرار گرفته است. از جمله نتایج حاصل شده تاثیر گذاری مثبت میزان بودجه و همچنین سطح ریسک پذیری بر روی توانمندی امدادرسانی و پوشش در شبکه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Bi-Level Mathematical Model for Hazardous Materials Transportation Network Design Problem Considering Response Planning

نویسندگان [English]

  • Rokhsare Torabi
  • Armin Jabbarzadeh
  • Mohsen Yahyaei
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Hazardous materials (Hazmat) transportation and emergency response during Hazmat incidents is a very important issue in transportation field. In this paper, a new bi-level optimization model for Hazmat transportation network design is proposed. The bi-level framework involves a regulatory authority (government) and hazmat carriers. The government (upper level) affects the carrier's decisions by locating Hazmat emergency response stations and Hazmat network design. The government aims to maximize the coverage of network routes according to available budget. The coverage of routes means responding to Hazmat incidents. The carriers (lower level) by deciding on Hazmat flows and selecting transportation routes, seek to minimize their travel cost. Using KKT condition, we reformulate the non-linear bi-level model as a single-level mixed integer linear programming one which is solvable by an optimization solver like CPLEX. Through computational analysis, different aspects of proposed model are investigated to evaluate the model performance. The results show that increasing in coverage radius and risk tolerance result in higher network responsiveness.

کلیدواژه‌ها [English]

  • Emergency Response Facility Location
  • network design
  • bi-level programmin
  • hazardous materials transportation
-Amaldi, E., Bruglieri, M. and Fortz, B. (2011) “On the hazmat transport network design problem”, Germany, Network Optimization.
 
-Ardjmand, E., Young, W. A., Weckman, G. R., Bajgiran, O. S., Aminipour, B. and Park, N. (2016) “Applying genetic algorithm to a new bi-objective stochastic model for transportation, location, and allocation of hazardous materials”, Expert Systems with Applications, Vol. 51, No. 1, pp. 49-58.
 
-Assadipour, G., Ke, G. Y. and Verma, M. (2016) “A toll-based bi-level programming approach to managing hazardous materials shipments over an intermodal transportation network”, Transportation Research Part D: Transport and Environment, Vol. 47, pp. 208-221.
-Beheshtinia, M. A., & Ghasemi, A. (2017). A multi-objective and integrated model for supply chain scheduling optimization in a multi-site manufacturing system. Engineering Optimization, pp. 1-19.
 
-Beheshtinia, M. A., Ghasemi, A., & Farokhnia, M. (2018) “Supply chain scheduling and routing in multi-site manufacturing system (case study: a drug manufacturing company”, Journal ofModelling in Management, Vol. 13, No.1, pp. 27-49.
 
-Berman, O., Drezner, Z., Krass, D. and Wesolowsky, G. O. (2009) “The variable radius covering problem.”, European Journal of Operational Research, Vol. 196, No. 2, pp. 516-525.
-Berman, O., Verter, V. and Kara, B. Y. (2007) “Designing emergency response networks for hazardous materials”, transportation. Computers & operations research, Vol. 34, No. 5, pp. 1374-1388.
-Bianco, L., Caramia, M. and Giordani, S. (2009) “A bilevel flow model for hazmat transportation network design”, Transportation Research Part C: Emerging Technologies, Vol. 17, No. 2, pp. 175-196.
-Bianco, L., Caramia, M., Giordani, S. and Piccialli, V. (2016). “A game-theoretic approach regulating hazmat transportation", Transportation Science, Vol. 50, No. 2, pp. 424-438.
-Borumand, A. and Beheshtinia, M. A. (2018) “A developed genetic algorithm for solving the multi-objective supply chain scheduling problem. Kybernetes, Vol. 47, No. 7, pp.??
-Carotenuto, P., Giordani, S. and Ricciardelli, S. (2007) “Finding minimum and equitable risk routes for hazmat shipments”, Computers & Operations Research, Vol. 34, No. 5, pp. 1304-1327.
-Chen, L. and Yuan, D. (2010) “Solving a minimum-power covering problem with overlap constraint for cellular network design”, European Journal of Operational Research, Vol. 203, No. 3, pp. 714-723.
-Chiou, S. W. (2016) “A bi-objective bi-level signal control policy for transport of hazardous materials in urban road networks”, Transportation research part D: Ttransport and Environment, Vol. 31, No. 42, pp. 16-44.
-Current, J. and Ratick, S. (1995) “A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials”, Location Science, Vol.3, No. 3, pp. 187-201.
-Drezner, Z., Wesolowsky, G. O. and Drezner, T. (2004) “The gradual covering problem”, Naval Research Logistics (NRL), Vol. 51, No. 6, pp. 841-855.
-Erkut, E. and Alp, O. (2007) “Designing a  road network for hazardous materials shipments”, Computers & Operations Research, Vol. 34, No. 5, pp. 1389-1405.
-Erkut, E. and Gzara, F. (2008) “Solving the hazmat transport network design problem”, Computers & Operations Research, Vol. 35, No. 7, pp. 2234-2247.
-Fortuny-Amat, J. and McCarl, B. (1981) “A representation and economic interpretation of a two-level programming problem”, Journal of Operational Research Society, Vol. 32, No. 9, pp. 783-792.
-Gopalan, R., Kolluri, K. S., Batta, R. and Karwan, M. H. (1990) “Modeling equity of risk in the transportation of hazardous materials”, Operations Research, Vol.38, No. 6, pp. 961-973.
-Gzara, F. (2013) “A cutting plane approach for bilevel hazardous material transport network design”, Operations Research Letters, Vol. 41, No. 1, pp. 40-46.
-Hamouda, G. (2004) “Risk-based decision support model for planning emergency response for hazardous materials road accidents”, Waterloo, Ontario, Canada, UWspace.
-Jiahong, Z. and Bin, S. (2010) “A new multi-objective model of location-allocation in emergency response network design for hazardous materials transportation”, Emergency Management and Management Sciences Conference, pp. 246-249
-Kang, Y., Batta, R. and Kwon, C. (2014) “Generalized route planning model for hazardous material transportation with VaR and equity considerations”, Computers & Operations Research, Vol. 43, pp. 237-247.
-Kara, B. Y. and Verter, V. (2004) “Designing a road network for hazardous materials transportation”, Transportation Science, Vol. 38, No. 2, pp. 188-196.
-List, G. F. and Turnquist, M. A. (1998) “Routing and emergency-response-team siting for high-level radioactive waste shipments”, IEEE Transactions on Engineering Management, Vol. 45, No. 2, pp. 141-152.
-Liu, X. (2017) “Optimizing rail defect inspection frequency to reduce the risk of hazardous materials transportation by rail”, Journal of Loss Prevention in the Process Industries, Vol. 48, pp. 151-161.
-Melkote, S., and Daskin, M. S. (2001). “An integrated model of facility location and transportation network design”, Transportation Research Part A: Policy and Practice, Vol. 35, No. 6, pp. 515-538.
-Mohammadi, M., Jula, P. and Tavakkoli-Moghaddam, R. (2017) “Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty”, European Journal of Operational Research, Vol. 257. No. 3, pp. 792-809.
-Pradhananga, R., Taniguchi, E., Yamada, T. and Qureshi, A. G. (2014) “Bi-objective decision support system for routing and scheduling of hazardous materials”, Socio-Economic Planning Sciences, Vol. 48, No. 2, pp.  135-148.
-Rezaei Ehsan, E., Makui, A. and Shahanaghi, K. (2012) “Emergency response network design for hazardous materials transportation with uncertain demand”,  International Journal of Industrial Engineering Computations, Vol. 3, No. 5, pp. 893-906.
-Sun, L., Karwan, M. H. and Kwon, C. (2015) “Robust hazmat network design problems considering risk uncertainty”, Transportation Science, Vol. 50, No. 4, pp. 1188-1203.
-Taslimi, M., Batta, R. and Kwon, C. (2017) “A comprehensive modeling framework for hazmat network design, hazmat response team location, and equity of risk”, Computers & Operations Research, Vol. 79, pp. 119-130.
-United Nations (2009) “Recommendations on the transport of dangerous goods, model regulations”, New York, United Nations Publications.
-Xin, C., Qingge, L., Wang, J. and Zhu, B. (2015) “Robust optimization for the hazardous materials transportation network design problem”, Journal of Combinatorial Optimization, Vol. 30, No. 2, pp. 320-334.
-Xu, J., Gang, J. and Lei, X. (2013) “Hazmats transportation network design model with emergency response under complex fuzzy environment”, Mathematical Problems in Engineering, Chengdu: May 2013.
-Zegordi, S. H., Abadi, I. K. and  Nia, M. B. (2010) “A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain”,  Computers & Industrial Engineering, Vol. 58, No. 3, pp. 373-381.
نخعی کمال آبادی، عیسی و حسینی، اقبال و فتحی، محمد (1393) "توسعه روش های حل برنامه ریزی دو سطحی خطی بر اساس روش شمارش ضمنی و روش دوگان", مجله مدلسازی پیشرفته ریاضی، سال چهارم، شماره اول، ص. 53-27.