شناسایی عوامل موثر و بررسی تصادف‌های ترافیکی با استفاده از رویکردهای داده‌کاوی (مطالعه موردی آزادراه تهران-قم)

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران

2 استادیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران

3 دانشیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران

چکیده

هدف اصلی این پژوهش شناسایی عوامل کلیدی و بررسی الگوریتم‌های مختلف داده‌کاوی در تصادفات ترافیکی در ایران، بخصوص در جاده‌های برون شهری است. تصادفات ترافیکی برون شهری یکی از منابع اصلی جهت تجزیه و تحلیل و بررسی شدت حوادث رانندگی و علل موثر برآنها است. در ادامه مجموعه قوانینی که می‌تواند در شناسایی عوامل و تاثیر آن‌ها در کاهش تصادفات موثر باشد استخراج خواهد شد. 5099 رکورد از داده‌های جمع آوری شده از محور تهران- قم در استان تهران مورد استفاده قرار گرفت. برای دستیابی به اهداف این پژوهش از تکنیک‌های مختلف داده‌کاوی استفاده گردید. به همین منظور از روش ارزیابی انتخاب مبتنی بر همبستگی برای شناسایی عوامل موثر و انتخاب بردار ورودی استفاده گردید. سپس 6 الگوریتم داده‌کاوی، بیزین ساده، لجیستیک، پرسپترون چندلایه، کلاس‌بندی از طریق رگرسیون، قوانین استنتاجی(پارت) و درخت تصمیم‌گیری جی48، برای پیش‌بینی دقت مدل‌های مورد ارزیابی با استفاده از نرم افزار داده‌کاوی وکا مورد استفاده قرار گرفتند؛ همچنین از الگوریتم اپریوری به همراه دو مدل جی48 و پارت جهت استخراج قوانین استفاده شد. نتایج حاصل از استخراج قوانین نشان داد که حضور عامل تصادف در صحنه تصادف، نوع برخورد، مانع دید، موقعیت تصادف، شرایط سطح راه، هندسه محل تصادف و علل مستقیم بیان شده توسط پلیس برای تصادف از مهم‌ترین عواملی بودند که در قوانین استخراج شده از مجموعه قوانین به آن‌ها اشاره شده و بیشترین تعداد تکرار را  داشتند. نتایج نشان دادند که الگوریتم‌های پرسپترون و پارت بهترین عملکرد را در میان سایر الگوریتم‌ها جهت پیش‌بینی در اختیار داشتند.

کلیدواژه‌ها

موضوعات


-Anvari, M. B., Tavakoli Kashani, A. and Rabieyan, R. (2017) "Identifying the most important factors in the at-fault probability of motorcyclists by data mining, based on classification tree models", International Journal of Civil Engineering, Vol.  15, No. 4, pp. 653-662
-Castro, Y. and Kim, Y. J. (2016) "Data mining on road safety: Factor assessment on vehicle accidents using classification models”, International Journal of Crashworthiness, Vol.  21, No. 2, pp. 104-111
-Chang, L. Y. and Wang, H. W. (2006) "Analysis of traffic injury severity: An application of non-parametric classification tree techniques", Accident Analysis and Prevention, Vol.  38, No. 5, pp. 1019-1027
-de Oña, J., López, G. and Abellán, J. (2013) "Extracting decision rules from police accident reports through decision trees", Accident Analysis & Prevention, Vol.  50, No., pp. 1151-1160
-Deb, R. and Liew, A. W. C. (2016) "Missing value imputation for the analysis of incomplete traffic accident data", Information Sciences, Vol.  339, No., pp. 274-289
-Geurts, K., Thomas, I., and ets, G. (2005) "Understanding spatial concentrations of road accidents using frequent item sets”, Accident Analysis and Prevention, Vol.  37, No. 4, pp. 787-799
-Haghighi, F. R. and GholamNejad, R. (2016) "Modeling the risk and safety of passage of students in roadside schools”, Journal of Transportation Engineering Research, Vol.  7, No. 4, pp. 605-614
-Jung, S., Qin, X. and Oh, C. (2016) "Improving strategic policies for pedestrian safety enhancement using classification tree modeling”, Transportation Research Part A: Policy and Practice, Vol.  85, No., pp. 53-64
-Kashani, A. T. and Besharati, M. M. (2017) "Fatality rate of pedestrians and fatal crash involvement rate of drivers in pedestrian crashes: a case study of Iran”, International Journal of Injury Control and Safety Promotion, Vol.  24, No. 2, pp. 222-231
-Kashani, A. T. and Mohaymany, A. S. (2011) "Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models”, Safety Science, Vol.  49, No. 10, pp. 1314-1320
-Kumar, S. and Toshniwal, D. (2017) "Severity analysis of powered two wheeler traffic accidents in Uttarakhand, India”, European Transport Research Review, Vol.  9, No. 2, pp.
-Kwon, O. H., Rhee, W. and Yoon, Y. (2015) "Application of classification algorithms for analysis of road safety risk factor dependencies”, Accident Analysis and Prevention, Vol.  75, No., pp. 1-15
-Mohaymany, A. S., Kashani, A. T. and Ranjbari, A. (2010) "Identifying driver characteristics influencing overtaking crashes”, Traffic Injury Prevention, Vol.  11, No. 4, pp. 411-416
-Montella, A. (2011) "Identifying crash contributory factors at urban roundabouts and using association rules to explore their relationships to different crash types”, Accident Analysis and Prevention, Vol.  43, No. 4, pp. 1451-1463

-Montella, A., Aria, M., D'Ambrosio, A. and Mauriello, F. (2011) "Data-mining techniques for exploratory analysis of pedestrian crashes”,  Transportation Research Record, Vol. 2237,  pp. 107-116.  DOI: 10.3141/2237-12

-Pakgohar, A., Tabrizi, R. S., Khalili, M. and Esmaeili, A. (2010) "The role of human factor in incidence and severity of road crashes based on the CART and LR regression: A data mining approach," 1st World Conference on Information Technology, WCIT-2010, Istanbul, 2011, pp. 764-769.
-Prati, G., Pietrantoni, L. and Fraboni, F. (2017) "Using data mining techniques to predict the severity of bicycle crashes”, Accident Analysis and Prevention, Vol.  101, No., pp. 44-54
-Taamneh, M., Alkheder, S. and Taamneh, S. (2017) "Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates”, Journal of Transportation Safety and Security, Vol.  9, No. 2, pp. 146-166
-Tao, G., Song, H., Liu, J., Zou, J. and Chen, Y. (2016) "A traffic accident morphology diagnostic model based on a rough set decision tree”, Transportation Planning and Technology, Vol.  39, No. 8, pp. 751-758
-Tavakoli Kashani, A., Rabieyan, R. and Besharati, M. M. (2014) "A data mining approach to investigate the factors influencing the crash severity of motorcycle pillion passengers”, Journal of Safety Research, Vol.  51, No., pp. 93-98
-Yau, K. K. W., Lo, H. P. and Fung, S. H. H. (2006) "Multiple-vehicle traffic accidents in Hong Kong”, Accident Analysis and Prevention, Vol.  38, No. 6, pp. 1157-1161