توسعه مدل مکان‌یابی- مسیریابی با در نظر گرفتن رضایت مشتری و دریافت و تحویل همزمان

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشکده مهندسی صنایع، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران

چکیده

در این مطالعه، مسأله مکان یابی- مسیریابی با در نظر گرفتن چندین انبار و پنجره زمانی سخت برای مشتریان مورد بررسی قرار می‌گیرد. هدف اصلی این مقاله، انتخاب بهترین مکان­ احداث انبارها با در نظر گرفتن زمانبندی و مسیریابی وسایل نقلیه ناهمگن است. این امر موجب کاهش هزینه احداث انبار در مکان نامطلوب می‌شود و به صورت همزمان مسیر بهینه مسائل نقلیه را پیدا می‌کند. رضایت مشتری از فرایند خدمت رسانی از مهم‌ترین مسائل هر سازمان است. بدین منظور پنجره زمانی سخت برای پاسخ به مشتریان در نظر گرفته شده است. در واقع نوع آوری اصلی این مطالعه را این گونه می توان بیان نمود که در دومساله مسیریابی و مکانیابی به طور همزمان مورد بررسی قرار می گیرند تا هزینه های متقابل بین مسیریابی و مکان یابی لحاظ شده و از این نظر می توان تاثیر بین هزینه های مکان یابی و مسیریابی را در نظر گرفت ، بدین جهت می تواند تاثیر فراوانی از  نقطه نظر کاهش هزینه ها ایفا نماید. به منظور بررسی صحت و دقت مدل، در ابعاد کوچک با روش محدودیت اپسیلون توسعه یافته مورد مقایسه قرار گرفته می‌شود. با توجه به NP-Hard بودن مسأله در ابعاد بزرگ، از الگوریتم تکاملی چند هدفه، به نام الگوریتم ژنتیک مرتب شده نامغلوب استفاده شده است. در پایان نتایج به دست آمده، به منظور نمایش کارآیی و اثربخشی مناسب در حل مسائل مختلف با ابعاد بزرگ و در زمان کوتاه مورد تجزیه و تحلیل قرار گرفته اند.

کلیدواژه‌ها

موضوعات


-   BañOs, R., Ortega, J., Gil, C., MáRquez, A. L.and De Toro, F. (2013) “A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows”, Computers & Industrial Engineering, Vol. 65, No. 2, pp. 286-296.
-   Beheshtinia, M. A.and Ghasemi, A. (2017) “A multi objective and integrated model for supply chain scheduling optimization in a multi-site manufacturing system”, Engineering Optimization Vol. 50, N0. 9, , pp. 1-19.
-   Bui, L. T. and Alam, S. (2008) “An introduction to multi-objective optimization”, Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 1-19.
-   Coello, C. A. C., Lamont, G. B. and Van Veldhuizen, D. A. (2007) “Evolutionary algorithms for solving multi-objective problems”, Springer
-   Euchi, J. and Euchi, J. (2017) “Genetic scatter search algorithm to solve the one-commodity pickup and delivery vehicle routing problem”, Journal of Modelling in Management, Vol. 12, No. 1, pp. 2-18.
-   Gang, H., Zhijing, G., Peng, Y. and Junqing, S. (2016) ”Vehicle routing problem with simultaneous pickups and deliveries and time windows considering fuel consumption and carbon emissions”. Paper presented at the Control and Decision Conference (CCDC), 2016 Chinese.
-   Hernandez, F., Gendreau, M. and Potvin, J. Y. (2017) “Heuristics for tactical time slot management: a periodic vehicle routing problem view”, International Transactions in Operational Research.
-   Javad, M. O. M. and Karimi, B. (2017) “A simulated annealing algorithm for solving multi-depot location routing problem with backhaul”, International Journal of Industrial and Systems Engineering, Vol. 25, No. 4, pp. 460-477.
-   Ma, Y., Han, J., Kang, K. and Yan, F. (2017) ”An improved ACO for the multi-depot vehicle routing problem with time windows”. Paper presented at the Proceedings of the Tenth International Conference on Management Science and Engineering Management.
-   Majidi, S., Hosseini-Motlagh, S.-M. and Ignatius, J. (2017) “Adaptive large neighborhood search heuristic for pollution-routing problem with simultaneous pickup and delivery”, Soft Computing, pp. 1-15.
-   Mavrotas, G. and Florios, K. (2013) “An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems”, Applied Mathematics and Computation, Vol. 219, No. 18, pp. 9652-9669.
-   Meng, Q., Lee, D.-H. and Cheu, R. L. (2005) “Multiobjective vehicle routing and scheduling problem with time window constraints in hazardous material transportation”, Journal of transportation engineering, Vol. 131, No. 9, pp. 699-707.
-   Mingyong, L.and Erbao, C. (2010) “An improved differential evolution algorithm for vehicle routing problem with simultaneous pickups and deliveries and time windows”, Engineering Applications of Artificial Intelligence, Vol. 23, No. 2, pp. 188-195.
-   Monirian, M. A., Vaziri, S. M.and Vaziri, A. M. (2017) ”Located Multiple Depots and Vehicles Routing with Capacity Problem”. Paper presented at the Proceedings of the Tenth International Conference on Management Science and Engineering Management.
-   Saeedi Mehrabad, M., Aazami, A.and Goli, A. (2017) “A location-allocation model in the multi-level supply chain with multi-objective evolutionary approach”, Journal of Industrial and Systems Engineering, Vol. 10, No. 3, pp. 0-0.
-   Shi, J., Zhang, G.and Sha, J. (2011) “Optimal production planning for a multi-product closed loop system with uncertain demand and return”, Computers & Operations Research, Vol. 38, No. 3, pp. 641-650.
-   Shi, Y., Boudouh, T. and Grunder, O. (2017) “A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand”, Expert Systems with Applications, Vol. 72, pp. 160-176.
-   Srinivas, N. and Deb, K. (1994) “Muiltiobjective optimization using nondominated sorting in genetic algorithms”, Evolutionary computation, Vol. 2, No. 3, pp. 221-248.
-   Sze, J. F., Salhi, S. and Wassan, N. (2017) “The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search”, Transportation Research Part B: Methodological, Vol. 101, pp. 162-184.
-              Beheshtinia, M. and Aarabi, A. (2017) “A genetic algorithm for integration of vehicle routing problem and production scheduling in supply chain (case study: medical equipment supply chain)”, Industrial Engineering journal, Vol. 51, No. 2, pp. 147-160 (In Persian)