مدیریت هوشمند انرژی در سیستم حمل و نقل برقی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده راهآهن، دانشگاه علم و صنعت، تهران، ایران

2 استادیار، دانشکده راهآهن، دانشگاه علم و صنعت، تهران، ایران

چکیده

آلودگی محیط زیست و کمبود انرژی به عنوان بحران‌ های جدی ، پژوهشگران و صنعت‌ گران را بر آن داشته تا به دنبال راهکار هایی مناسب با هدف مدیریت انرژی باشند . صنعت حمل و نقل برقی به ویژه سیستم‌ های مترو درون شهری و ایستگاه‌ های شارژ خودرو های الکتریکی از جمله مصرف‌ کنندگان بزرگ انرژی برای شبکه برق سراسری محسوب می‌گردند ، به گونه‌ ای که مصرف این بار‌ها ، معمولاً با پیک تقاضای برق از شبکه اصلی همزمان می‌ باشد ، به همین دلیل این بار ها آثار نامطلوبی بر شبکه سراسری برق دارند . استفاده از انرژی عظیم حاصل از ترمز قطار ها می‌ تواند یکی از مؤثرترین راهکار ها برای حل مشکل مذکور باشد . در واقع همانند شبکه‌ های قدرت که به دنبال استفاده از منابع تولید پراکنده جهت افزایش بهره وری سیستم می باشند ، انرژی بازگشتی قطار ها نیز در سیستم‌ های حمل و نقل برقی می تواند همچون یک منبع تولید پراکنده در نظر گرفته شود . لذا ، برای اولین بار ، ساختار یک سیستم یکپارچه متشکل از شبکه مترو و ایستگاه‌ های شارژ خودرو های الکتریکی با در نظر گرفتن یک ذخیره‌ کننده انرژی و با بهر‌ه‌ گیری از انرژی حاصل از ترمز گیری و انرژی خورشیدی به عنوان تولیدات پراکنده در این مقاله ارائه می‌ گردد . این روند به گونه‌ ای صورت می‌ گیرد که مصرف انرژی مدیریت شده و به منظور کاهش تأثیرات سوء و هزینه‌ های زیر ساخت و بهره‌ برداری ، مدل مصرف انرژی از نظر فنی و اقتصادی بهینه‌ سازی می‌ گردد .

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Smart Energy Management in Electric Transportation System

نویسندگان [English]

  • Sepehr Najafi Larijani 1
  • Seyed Saeed Fazel 2
1 MSc. Student, Faculty of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
2 Assistant Professor, Faculty of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Air pollution and energy shortage as serious crises, made researchers and industrialists trying to find suitable solutions with the aim of energy management. Electric transportation loads (especially, electric vehicles and urban metro systems), are considered as the major consumers of energy for the electric network. Since the mentioned vehicles, have time overlap with the peak demand of main electric network at the peak time consumption, the feeding procedure has negative impacts on the upstream grid. One of the best solutions is reusing the huge regenerative energy of braking trains. The regenerative energy could be taken to consideration as a distributed generation in electric transportation system as well as the distributed generations of power systems like solar energy resources. Therefore, in this paper an integrated configuration comprised of the urban metro system, charging station for electric vehicles, photovoltaic panels, and energy storage as an interface for energy exchange is introduced to alleviate the problems. The priorities of power consuming, supplying, charging or discharging are defined by a smart energy management system. This system imposes the economic and technical constraints to power flows. By considering this method the profitable consequences are imminent. Supplying the loads by the smart configuration leads to energy management and consequently the reduction of the operation and infrastructure expenses and decreasing the negative impacts on the upstream network by optimizing the model of energy consumption from economic and technical points of view.

کلیدواژه‌ها [English]

  • Smart energy management
  • electric vehicles
  • metro
  • regenerative energy
- Aggeler, D., Canales, F., Zelaya, H., La Parra, D., Coccia, A., Butcher, N. and Apeldoorn, O. (2010) “Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids”, IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT Europe), IEEE, pp. 1–8.
- Akli, C. R., Roboam, X., Sareni, B. and Jeunesse, A. (2007) “Energy management and sizing of a hybrid locomotive”, Power Electronics and Applications, 2007 European Conference on, Vol. c, IEEE, pp. 1–10.
- Bolund, B., Bernhoff, H. and Leijon, M. (2007) “Flywheel energy and power storage systems”, Renewable and Sustainable Energy Reviews, Elsevier, Vol. 11, No. 2, pp. 235–258.
- Botsford, C. and Szczepanek, A. (2009) “Fast charging vs. slow charging: Pros and cons for the new age of electric vehicles”, International Battery Hybrid Fuel Cell Electric Vehicle Symposium, pp. 1–9.
- Cornic, D. (2010) “Efficient recovery of braking energy through a reversible dc substation”, Electrical Systems for Aircraft, Railway and Ship Propulsion, IEEE, pp. 1–9.
- Dickerman, L. and Harrison, J. (2010) “A new car, a new grid”, IEEE Power and Energy Magazine, Vol. 8, No. 2, p. 55.
- Faranda, R. and Leva, S. (2007) “Energetic sustainable development of railway stations”, 2007 IEEE Power Engineering Society General Meeting, PES, pp. 1–6.
- Fuente, E. P. de la, Mazumder, S. K. and Ignacio González, Franco (2014) “Railway electrical smart grids”, IEEE Electrification Magazine, September, pp. 49–55.
- González-Gil, A., Palacin, R. and Batty, P. (2013) “Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy”, Energy Conversion and Management, Elsevier, Vol. 75, pp. 374–388.
- Gunselmann, W. (2005) “Technologies for increased energy efficiency in railway systems”, Power Electronics and Applications, 2005 European Conference on, IEEE, p. 10–pp.
- Hayashiya, H., Furukawa, T., Itagaki, H., Kuraoka, T., Morita, Y., Fukasawa, Y. and Mitoma, Y., ... (2011) “Potentials, peculiarities and prospects of solar power generation on the railway premises”, 2012 International Conference on Renewable Energy Research and Applications, 11-14 November 2012.
- Hayashiya, H., Kikuchi, S., Matsuura, K., Hino, M., Tojo, M., Kato, T., Ando, M., et al. (2013) “Possibility of energy saving by introducing energy conversion and energy storage technologies in traction power supply system”, Power Electronics and Applications (EPE), 2013 15th European Conference on, IEEE, pp. 1–8.
- Hayashiya, H., Yoshizumi, H., Suzuki, T., Furukawa, T., Kondoh, T., Kitano, M., Aoki, T., et al. (2011) “Necessity and possibility of smart grid technology application on railway power supply system”, Proceedings of the 2011 14th European Conference on Power Electronics and Applications, pp. 1–10.
- Jaffery, S. H. I., Khan, H. A., Khan, M. and Ali, S. (2012) “A study on the feasibility of solar powered railway system for light weight urban transport”, Proc World Renewable Energy Forum, Vol. 2012, pp. 1892–1896.
- Lassila, J., Haakana, J., Tikka, V. and Partanen, J. (2012) “Methodology to analyze the economic effects of electric cars as energy storages”, IEEE Transactions on Smart Grid, IEEE, Vol. 3, No. 1, pp. 506–516.
- Lukasiak, P., Antoniewicz, P., Swierczynski, D. and Kolomyjski, W. (2015) “Technology comparison of energy recuperation systems for DC rail transportation”, 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Vol. 5, IEEE, pp. 372–376.
- Lund, H. and Kempton, W. (2008) “Integration of renewable energy into the transport and electricity sectors through V2G”, Energy Policy, Elsevier, Vol. 36 No. 9, pp. 3578–3587.
- Martins, M. C. S. and Trindade, F. C. L. (2015) “Time series studies for optimal allocation of electric charging stations in urban area”, Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015 IEEE PES, IEEE, pp. 142–147.
- Morrow, K., Karner, D. and Francfort, J. (2008) “US Department of energy vehicle technologies program—advanced vehicle testing activity—plug-in hybrid electric vehicle charging infrastructure review”, Final Report by Battelle Energy Alliane, No. 58517, p. 34.
- Okui, A., Hase, S., Shigeeda, H., Konishi, T. and Yoshi, T. (2010) “Application of energy storage system for railway transportation in Japan”, 2010 International Power Electronics Conference - ECCE Asia -, IPEC 2010, pp. 3117–3123.
- Pankovits, P., Ployard, M., Pouget, J., Brisset, S., Abbes, D. and Robyns, B. (2013) “Design and operation optimization of a hybrid railway power substation”, Power Electronics and Applications (EPE), 2013 15th European Conference on, IEEE, pp. 1–8.
- Ratniyomchai, T., Hillmansen, S. and Tricoli, P. (2014) “Recent developments and applications of energy storage devices in electrified railways”, IET Electrical Systems in Transportation, IET, Vol. 4 No. 1, pp. 9–20.
- Sbordone, D., Bertini, I., Di Pietra, B., Falvo, M.C., Genovese, A. and Martirano, L. (2015) “EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm”, Electric Power Systems Research, Elsevier, Vol. 120, pp. 96– 108.
- Srinivasaraghavan, S. and Khaligh, A. (2011) “Deterministic scheduling of a fleet of plug-in hybrid vehicles for distributed generation”, IEEE Power and Energy Magazine, Vol. 9 No. 4, pp. 46–53.
- Steiner, M., Klohr, M. and Pagiela, S. (2007) “Energy storage system with ultracaps on board of railway vehicles”, Power Electronics and Applications, 2007 European Conference on, IEEE, pp. 1–10.
- Steiner, M. and Scholten, J. (2004) “Energy storage on board of DC fed railway vehicles”, Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, Vol. 1, IEEE, pp. 666–671.
- TramStore21. (n.d.). “sustainable and efficient tram depots for cities in the 21st century, TramStore21 project, 2013”.
- Tzeng, J., Emerson, R. and Moy, P. (2006) “Composite flywheels for energy storage”,  Composites Science and Technology, Elsevier, Vol. 66 No. 14, pp. 2520–2527.
- Vrignaud, G. (2011) “Substation with zero auxiliary consumption”, 9th World Congress on Railway research–WCRR.
- Yilmaz, M. and Krein, P.T. (2013) “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces”, IEEE Transactions on Power Electronics, IEEE, Vol. 28 No. 12, pp. 5673–5689.