طراحی مدل و ارائه روش حل برای مسأله حمل و نقل هزینه ثابت با در نظر گرفتن محدودیت تخفیف

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه علم و فنآوری مازندران، بهشهر، ایران

2 استادیار، دانشکده مهندسی عمران، دانشگاه علم و فنآوری مازندران، بهشهر، ایران

3 مربی، دانشکده مهندسی عمران، دانشگاه علم و فنآوری مازندران، بابل، مازندران، بهشهر، ایران

چکیده

زنجیره تامین‏ شبکه‏ای از تسهیلات و مراکز توزیع است که‏ تهیه و تدارک مواد خام، تبدیل آن به‏ محصولات نهایی و واسطه‏ای و توزیع این‏ محصولات نهایی به مشتریان را انجام می‏دهد. هزینه‌های حمل و نقل امروزه به عنوان یکی از مهم‌ترین هزینه‌های موثر در قیمت تمام شده کالا و قیمت نهایی مصرف برای مشتری محسوب می‌گردد. این بخش دربرگیرنده فعالیت‌هایی است که به شکلی گسترده در تمامی زمینه‌های تولید، توزیع و مصرف کالا و خدمات جریان داشته و در مجموعه فعالیت‌های اقتصادی نقش غیرقابل انکاری برعهده دارد.  مسأله حمل و نقل با هزینه ثابت توسعه­ای از مسأله عمومی حمل و نقل است. این مساله از جمله مسائل پایه‌ای و مهم حوزه حمل و نقل به شمار می‌رود که اخیرا روشهای حل این مساله و فرضیات دنیای واقعی بسیار مورد توجه پژوهشگران قرار گرفته است. در این تحقیق، مسأله حمل و نقل هزینه ثابت با در نظر گرفتن محدودیت تخفیف، مدل­سازی و حل شده است. با توجه بهNP- Hardبودن مسأله، سه الگوریتم فراابتکاری برای حل مدل توسعه داده شده است، الگوریتم پایه‌ای ژنتیک که الگوریتمی مبتنی بر جمعیت است، الگوریتم شبیه‌سازی تبرید که الگوریتمی مبتنی بر جستجوی تک نقطه ای است و همچنین الگوریتم جمعیت محور وال که الگوریتمی جدید است و برای اولین بار در این زمبنه استفاده شده است. به علاوه، روش نمایش پروفر برای کد کردن مسأله در نظر گرفته شده است. به دلیل اهمیت تنظیم پارامتر‌ها در طراحی الگوریتم‌ها، از روش تاگوچی برای این مهم استفاده شده است. همچنین 28 مسأله در ابعاد مختلف، حل و نتایج آنها با حل دقیق بدست آمده با نرم‌افزار GAMS مقایسه شده است.

کلیدواژه‌ها

موضوعات


- شورورزی، حسین، نعیمی، احید و طالعی، محمد. (1395) "بهینه سازی سیستم حمل و نقل ادارات با خوشه بندی به روش K میانگین و ترکیب الگوریتم Saving و جستجوی ممنوع"، فصلنامه مهندسی حمل و نقل، دوره 7، شماره 4، ص. 665-678.
-فاطمی قمی، سید محمد تقی ( 1383)" برنامه ریزی و کنترل تولید و موجودیها"،  شرکت نشر و چاپ بین الملل، 550 ص.
-Adlakha, V. and Kowalski, K. (2003) "A simple heuristic for solving small fixed-charge transportation problems", Omega, Vol.31, No. 3, pp. 205-211.
-Adlakha, V., Kowalski, K. and Lev, B. (2010)  "A branching method for the fixed charge transportation problem”, Omega, Vol.38, No. 5, pp. 393-397.
-Altassan, K. M., El-Sherbiny, M. M. and Abid, A. D. (2014) "Artificial immune algorithm for solving fixed charge transportation problem", Appl. Math, Vol. 8, No. 2, pp. 751-759.
-Ebrahimnejad, A. (2016) "New method for solving Fuzzy transportation problems with LR flat fuzzy numbers", Information Sciences, No. 357, pp.108–124.
-Gen, M. and Syarif, A. (2005) "Hybrid genetic algorithm for multi-time period production/distribution planning", Computers and Industrial Engineering, No. 48, pp.799–809.
-Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S. and Tavakkoli-Moghaddam, R. (2010) "Addressing a nonlinear fixed-charge transportation problem using a spanning tree-based genetic algorithm", Computers and Industrial Engineering, Vol.59, No. 2, pp. 259-271.
-Holland, J. H. (1975) "Adaptation in natural and artificial systems", University of Michigan Press, Ann Arbor.
-Jawahara, N. and Balajib, A.N. (2009) "A genetic algorithm for the two-stage supply chain distribution", Vol.194, No. 2, 496-537.
-Jawahar, N. and Balaji, N. (2011) "A genetic algorithm based heuristic to the multi-period fixed charge distribution problem", Applied Soft Computing, Vol. 12, No. 2,  pp. 682–699.
-Jo, J. B., Li, Y. and Gen, M. (2007) "Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm", Computers and Industrial Engineering, Vol. 53, No. 2, pp. 290-298.
-Juman, Z.A.M.S. and Hoque, M. A. (2015) "An efficient heuristic to obtain a better initial feasible solution to the transportation problem", Applied Soft Computing, Vol. 34, pp. 813-826.
-Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983) "Optimization by simulated annealing”, Science, Vol. 220, Issue 4598, pp.671–679.
-Klose, A. (2008) "Algorithms for solving single-sink fixed-charge transportation problem", Computers & Operations Research, Vol. 35, pp.2079–2092.
-Lotfi, M. M. and Tavakkoli-Moghaddam, R. (2013) "A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems", Applied Soft Computing, Vol. 13, No. 5, pp. 2711-2726.
-Mirjalili, S. A. and Lewis, A. (2016) "The Whale Optimization Algorithm", Advances in Engineering Software, Vol. 95, pp.51–67.
-Molla- Alizadeh- Zavardehi, S., Hajiaghaei-Keshteli, M. and Tavakkoli-Moghaddam, R. (2011) "Solving a capacitated fixed-charge transportation problem by artificial immune and genetic algorithms with a Prüfer number representation", Expert Systems with Applications, Vol. 38, No. 8, pp.10462-10474.
فا-Pramanik, S., Janab, D. K, Mondala, S. K. and Maiti, M. (2015) "A fixed-charge transportation problem in two-stage supply chain network in Gaussian type-2 fuzzy environments",Information Sciences, No. 325, pp.190–214.
-Sun, M., Aronson, J. E., Patrick, P. G. and Drinka, D. (1998) "A tabu search heuristic procedure for the fixed charge transportation problem", European Journal of Operational Research, Vol.  106, pp. 441-456.
-Taguchi, G. (1986) "Introduction to quality engineering", Asian Productivity Organization/UNIPUB, White Plains.
-Xie, F. and Jia, R. (2012) "Nonlinear fixed charge transportation problem by minimum cost flow-based genetic algorithm", Computers and Industrial Engineering, Vol. 63, No. 4, pp.763-778.