مدل پیش بینی کوتاه مدت سرعت متوسط غیرمجاز با رویکرد یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه حمل و نقل ریلی، دانشکده مهندسی راه آهن، دانشگاه علم و صنعت ، تهران، ایران

2 دانشجوی دکتری برنامه ریزی حمل و نقل ریلی، دانشکده مهندسی عمران، دانشگاه تربیت مدرس، تهران، ایران

چکیده

سرعت غیرمجاز یکی از عوامل اصلی وقوع تصادفات رانندگی است. در اثر سرعت غیرمجاز در راه­های برون‌شهری نه تنها احتمال وقوع تصادف افزایش پیدا می­کند بلکه بر شدت تصادفات نیز افزوده می­شود، لذا کنترل سرعت امری واجب به نظر می­رسد. نکته حائز اهمیت دیگر تلاش برای جلوگیری از وقوع تخلف سرعت غیرمجاز است. در این پژوهش سرعت متوسط ترافیک برای محور خرم‌آباد به اراک برای آینده نزدیک پیش­بینی می­شود. چنانچه سرعت متوسط پیش­بینی شده به سرعت مجاز نزدیک یا از آن بیشتر شود، می­توان قبل از وقوع حادثه تمهیدات لازم به‌منظور کاهش سرعت متوسط ترافیک به وسیله استفاده­کنندگان از راه یا گردانندگان سیستم اندیشیده شود. به‌منظور پیش­بینی سرعت متوسط ترافیک، داده ترافیکی محور یاد شده توسط دستگاه­های سرعت‌سنج در سال­های اخیر ثبت شده است. استخراج ویژگی­های مؤثر بر سرعت ترافیک نیز سبب تکمیل شدن مجموعه داده شده می‌شود تا بتوان از این ویژگی­ها برای پیش­بینی سرعت متوسط استفاده کرد. سه مدل ماشین بردار پشتیبان، شبکه عصبی مصنوعی و شبکه عصبی مصنوعی بازگشتی به‌عنوان سه روش مبتنی بر یادگیری ماشین مورد استفاده قرار گرفته­اند. هر سه روش قابلیت تحلیل داده­های حجیم ترافیکی را داشته و در ضمن روش شبکه عصبی مصنوعی بازگشتی به‌عنوان یک روش مبتنی بر یادگیری عمیق تطابق بیشتری با ماهیت سری زمانی داده دارد. نتایج نشان می­دهد برای هر دو جهت رفت‌وبرگشت این محور، زمانی که تنها از ویژگی­های تقویمی و آب­وهوا استفاده شود میانگین درصد خطای مطلق مدل­ها بین 8/2 تا 1/5 درصد است و درصد پیش­بینی صحیح سرعت­های بالای 85 کیلومتر بر ساعت بالای 80 درصد است. همچنین با افزودن مقادیر مشاهده شده سرعت در بازه زمانی 3 تا 8 ساعت گذشته به‌عنوان متغیر پیش­بینی کننده، میانگین درصد خطای مطلق مدل­ها به 5/2 تا 6/4 درصد تقلیل پیدا می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

A Short-term model for detecting high traffic speed violation by using machine learning approach

نویسندگان [English]

  • Reza Mohammad Hasany 1
  • Arash Rasaizadi 2
1 Faculty of Railway engineering, Iran University of Science and Technology, Tehran, Iran
2 Phd Student of Civil engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Speed violation is one of the main causes of accidents. High speed not only increases the probability of occurrence of accidents but also increases the severity of accidents. So a vital point is trying to prevent the occurrence of speed violations. In this study, the hourly average traffic speed for Khorramabad to Arak highway is predicted for the future. If the predicted speed is near or exceeds the permitted speed, it is necessary to consider arrangements and preparations to reduce the average speed of traffic by users or the transportation network operators. In order to predict hourly average traffic speed, related traffic data was recorded in recent years. Many new features that affect traffic speed are extracted and used in predictive models. Three machine learning methods, including support vector machine, artificial neural network, and recurrent neural network, have been used. All three methods have the ability to analyze big traffic data, and in addition, the recurrent neural network has more consistency with the time-series nature of data. The results show that for both directions of this highway, by using only calendar and weather features, the mean absolute percentage error of the models is varied between 2.8 to 5.1 percent. Models can predict speeds over 80 kilometers per hour with precision over 80 percent. By adding the observed speed of the previous 3 to 8 hours as predictive features, the mean absolute percentage error of the models is decreased to 2.5 to 4.6.

کلیدواژه‌ها [English]

  • Speed violation detection
  • Recurrent Neural Network
  • Artificial Neural Network
  • Support Vector Machine
  • Machine Learning
- قاسم پور, بهزادی, سعید. (1399). مدلسازی و پیش بینی ترافیک با استفاده از شبکه ی عصبی پایه و شبکه ی عصبی موجک و به کارگیری سه الگوریتم فراابتکاری ژنتیک، ازدحام ذرات و رقابت استعماری جهت بهینه سازی. نشریه علمی علوم و فنون نقشه برداری, 10(3), 147-163.‎
 -شکیبا، م.، و تشنه لب، م.، و زکایی، س. (1388). پیش بینی نرخ ترافیک ورودی به مسیریاب با استفاده از شبکه عصبی با قابلیت وزن های دینامیک دار. مهندسی برق مجلسی, 3(2 (9)), 1-5.
 
- Chen, Y., Chen, Y., & Yu, B. (2020) “Speed distribution prediction of freight vehicles on mountainous freeway using deep learning methods”. Journal of Advanced Transportation, Vol. 2020.
 
- Dengen, N. (2016) “Comparison of SARIMA, NARX and BPNN models in forecasting time series data of network traffic”. In Science in Information Technology (ICSITech), 2nd International Conference on IEEE.
 
- Do, L. N., Vu, H. L., Vo, B. Q., Liu, Z., & Phung, D. (2019) “An effective spatial-temporal attention based neural network for traffic flow prediction”. Transportation research part C: emerging technologies, Vol. 108, pp. 12-28.
 
- Dong, H., Jia, L., Sun, X., Li, C., & Qin, Y. (2009) “Road traffic flow prediction with a time-oriented ARIMA model”. In 2009 Fifth International Joint Conference on INC, IMS and IDC, pp. 1649-1652.
 
- Garg, N., Mangal, S. K., Saini, P. K., Dhiman, P., & Maji, S. (2015) “Comparison of ANN and analytical models in traffic noise modeling and predictions”. Acoustics Australia, Vol. 43, No. 2, pp. 179-189.
 
- Ghosh, B., Basu, B., O’Mahony, M., (2007) “Bayesian time-series model for short-term traffic flow forecasting”. Journal of Transportation Engineering, Vol. 133, No. 3, pp. 180-189.
 
- Kumar, K., Parida, M., Katiya, V.K., (2014) “Short Term Traffic Flow Prediction for a Non-Urban Highway Using Artificial Neural Network”. International Journal of Environmental Science and Technology, Vol. 11, No. 3, pp. 719-730.
 
- Lee, Y. (2009) “Freeway travel time forecast using artifical neural networks with cluster method” In Information Fusion, 12th International Conference on IEEE.
 
- Maji, A., Singh, D., Agrawal, N., & Zaman, M. (2018). “Operating speed prediction models for tangent sections of two-lane rural highways in Oklahoma State”. Transportation Letters, Vol. 12, No. 2, pp. 130-137.
 
- Rasaizadi, A., A. Ardestani, and S.E. Seyedabrishami, (2020) Traffic management via traffic parameters prediction by using machine learning algorithms. International Journal of Human Capital in Urban Management.
 
- Rong, C. L., Chun, W. Q., (2010) “Prediction model for urban expressway short-term traffic flow based on the support vector regression”. In tenth International conference of Chinese Transportation Professionals (ICCTP).
 
- Tang, J., Chen, X., Hu, Z., Zong, F., Han, C., & Li, L. (2019) “Traffic flow prediction based on combination of support vector machine and data denoising schemes”. Physica A: Statistical Mechanics and its Applications, pp. 120642.
 
- Westeyn, T., Presti, P., Johnson, J., & Starner, T. (2009) “A naive technique correcting time-series data for recognition applications”. In 2009 International Symposium on Wearable Computers, pp. 159-160.
 
- Xiaoyu, H., Yisheng, W., Siyu, H., (2013) “Short-Term traffic flow forecasting based on two-tier K-nearest neighbor algorithm”. Procedia - Social and Behavioral Sciences, Vol. 96, No. 6, pp. 2529-2536.
 
 
- Yang, X., Zou, Y., Tang, J., Liang, J., & Ijaz, M. (2020) “Evaluation of Short-Term Freeway Speed Prediction Based on Periodic Analysis Using Statistical Models and Machine Learning Models”. Journal of Advanced Transportation.
 
- Zhang, C., Sun, S., Yu. G., (2004) “A Bayesian Network Approach to Time Series Forecasting of Short-Term Traffic Flows”. In Intelligent Transportation Systems, Proceedings. The 7th International IEEE Conference.
 
- Zhou, M., Qu, X., & Li, X. (2017) “A recurrent neural network based microscopic car following model to predict traffic oscillation”. Transportation research part C: emerging technologies, Vol. 84, pp. 245-264.
 
- Zhu, Z., Tang, L., Xiong, C., Chen, X., & Zhang, L. (2019) “The conditional probability of travel speed and its application to short-term prediction”. Transportmetrica B: Transport Dynamics, Vol. 7, No. 1, pp. 684-706.