شناسایی حسگر مطلوب برای تشخیص آسیب در پایه‏های بتنی پلها با استفاده از روش‏های تفاضل ماتریسی اصلاح شده و تانسوری

نوع مقاله : علمی - پژوهشی

چکیده

روش‏های تفاضل ماتریسی اصلاح شده و تانسوری، روش‏هایی کاربردی اما ساده برای شناسایی آسیب در پایه‏های بتنی پلها هستند. در این روشها برای اولین بار از توابع زمان- فرکانس مربعی برای شناسایی آسیب در پلها استفاده شده است. در روش‏های سیگنالی، تشخیص آسیب با پایش رفتار سازه امکان‏پذیر می‏شود و جهت اندازه‏گیری رفتار سازه از حسگرها استفاده می‏گردد. با توجه به تنوع حسگرها لازم است متناسب با روش بکار گرفته شده برای تشخیص آسیب، حسگر مورد استفاده برای اندازه‏گیری رفتار سازه تعیین شود و حساسیت روش تشخیص آسیب به نوع سیگنال‏های ثبت شده مورد بررسی قرار گیرد. در این تحقیق الگوریتم نیروی محرک و تابع زمان- فرکانس برای شناسایی آسیب در پایه‏های بتنی پلها مورد استفاده قرار گرفته است. همچنین حسگرهای جابجایی‏سنج، سرعت‏سنج و شتاب‏سنج برای شناسایی آسیب در پایه‏های بتنی پلها، با استفاده از روش‏های تفاضل ماتریسی اصلاح شده و تانسوری مورد ارزیابی قرارگرفته و در نهایت حسگر مطلوب شناسایی شده است. بر اساس نتایج به دست آمده،  مشخص شده  که در صورت کاربرد سیگنال‏های پاسخ ثبت شده با حسگر جابجایی‏سنج در روش‏های تفاضل ماتریسی اصلاح شده و یا تانسوری، در همه مواقع، پایه آسیب‏دیده به درستی شناسایی شده، لیکن با استفاده از سیگنال‏های ثبت شده با حسگر سرعت‏سنج و شتاب‏سنج به ترتیب در 9/88% و 4/94% محل آسیب به طور صحیح گزارش شده است. ضمناً تأثیر فاصله نصب حسگرها تا محل آسیب‏دیده و اثر آن در نتایج مورد مطالعه بررسی شده است. مطابق با نتایج محاسبه شده با کاهش فاصله نصب هریک از حسگرهای جابجایی‏سنج، سرعت‏سنج و یا شتاب‏سنج با محل آسیب، توانایی و دقت روش‏های تفاضل ماتریسی اصلاح شده و تانسوری در شناسایی پایه آسیب‏دیده افزایش می‏یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of the Desired Sensor for Detecting Damage in Concrete Bridge Piers using Modified Matrix Subtraction Method and Tensor Method

چکیده [English]

Modified Matrix Subtraction Method (MMSM) and Tensor Method(TM) are simple but useful methods for detecting damage in concrete piers of bridges. In the methods, square time-frequency representation was used for the first time to damage detection in the bridges. In signal procedures, damage diagnosis becomes possible with structural monitoring which sensors are used for measuring the structural behavior. Considering the variety of sensors, in accordance with the used method to detect damage, it is necessary, suitable sensor for measuring structural behavior is determined and sensitivity of the used method to recorded signals is investigated. In this research, exciting force and time-frequency representation algorithm was used to detect damage and determine its location. Besides, analytical models of W180 and MGR bridges were selected as the structural samples. Also sensors including displacement gauge, speedometer and accelerometer for detecting damage in concrete piers of bridges using MMSM and TM were evaluated and optimal signal type which is much compatible with the proposed methods and algorithm were assessed and identified. According to performed calculations, using response signals recorded by displacement gauges and applying MMSM and TM, better results were obtained when compared to speedometer and accelerometer were used. When displacement gauges were used, the damaged piers were correctly identified in all of the cases. However, using signals recorded by speedometer and accelerometer, damaged piers were reported correctly in 88.9% and 94.4% of the cases, respectively. Furthermore, the effects of the distance of the sensor locations from the affected area and their impact on the results were studied. In accordance with the calculated results, by reducing the distance between mounting location of the sensors from the damaged area, ability and accuracy of MMSM and TM were increased.

کلیدواژه‌ها [English]

  • displacement gauge
  • speedometer
  • accelerometer
  • Modified Matrix Subtraction Method
  • Tensor Method
-Ahmadi, H. R. and Daneshjoo, F. (2010) “A new three-dimensional Tensor Method for seismic damage detection in concrete piers of bridges using response signals”, Journal of Transportation Engineering, Vol. 2, No. 2, pp. 115- 126.(in Persian)

-Ahmadi, H. R. and Daneshjoo, F. (2012a) “The assessment and comparison of three square time-frequency distributions including Born-Jordan, Margenau-Hill and Rihaczek for extraction of dynamic properties from seismic response signals of bridge concrete piers”, 2nd International Conference on Acoustics & Vibration, Tehran, Iran

-Ahmadi, H. R.  and Daneshjoo, F. (2012b) “A harmonic vibration, output only and time-frequency representation based method for damage detection in concrete piers of complex bridges”, International Journal of Civil and Structural Engineering, Vol. 2, No. 3, pp. 987- 1002.

-American Association of State Highway and Transportation (1990) “Manual for maintenance inspection of bridges”, USA: Washington, D.C.
-Aviram, Ady, Mackie, Kevin R. and Stojadinovic, Božidar (2008) “Guidelines for nonlinear analysis of bridge structures in California”, USA: Berkeley, PEER Report 2008/03.

-Bagheri, A., Ghodrati Amiri, G., Khorasani, M. and Bakhshi, H. (2011) “Structural damage identification of plates based on modal data using 2D discrete wavelet transform”, Structural Engineering and Mechanics, Vol. 40, No. 1, pp. 13–28.

-Bonato, P., Ceravolo, R., De Stefano, A. and Molinari, F. (1998) “Time-frequency and cross-time-frequency based techniques for structural identification of systems”, USA: Pennsylvania, Proceedings of the IEEE International Symposium on Time-Frequency and Time-Scale Analysis.

-Bonato, P., Ceravolo, R., De Stefano, A. and Molinari, F. (2000) “Use of cross-time-frequency estimators for structural identification in non-stationary conditions and under unknown excitation”, Journal of Sound and Vibration, Vol. 237, No. 5, pp. 779-791.

-Bradford, Samuel Case (2006) “Time-frequency analysis of systems with changing dynamic properties”, USA: California Institute of Technology, PhD thesis.

-Brinckerhoff, Parsons (1992) “Bridge inspection and rehabilitation: a practical guide”, UK: John Wiley & Sons Ltd.

-Caltrans (2004) “Caltrans seismic design criteria”, USA: California, California Department of Transportation.

-Cohen, L. (1989) “Time-frequency distributions-a review”, Proceedings of the IEEE, Vol. 77, No. 7, pp. 941-981.

-Cohen, L. (2010) “Time–frequency approach to radar, sonar and seismic wave propagation with dispersion and attenuation”, IET Signal Processing, Vol. 4, No. 4, pp. 421-427.

-Daneshjoo, F., Ahmadi, H. R. and Mobtaker, G. (2011) “Feature identification and damage detection of concrete piers of bridges using time-frequency representation and modified matrix subtraction method”, accepted in Sharif Journal of Science and Technology.(in Persian)

-De Stefano, A., Ceravolo, R. and Sabia, D. (2001) “Output only dynamic identification in time-frequency domain”, USA: Arlington, Proceedings of the American Control Conference, pp. 447-449.

-Doebling, Scott W., Farrar, Charles R., Prime, Michael B. and Shevitz, Daniel W. (1996) “Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A Literature Review”, USA: Los Alamos National Laboratory, LA-13070-MS.

-Guo, Z., Durand, L. G. and Lee, H. C. (1994) “Comparison of time-frequency distribution techniques for analysis of simulated doppler ultrasound signals of the femoral artery”, IEEE Transactions on Biomedical Engineering, Vol. 41, No. 4, pp. 1866-1876.

-Hammond, J. K. and White, P. R. (1996) “The analysis of non-stationary signals using time-frequency methods”, Journal of Sound and Vibration, Vol. 190, pp. 419–447.

-Hlawatsch, Franz and Auger, François (2008) “Time-frequency analysis”, UK: ISTE Ltd and John Wiley & Sons Ltd.

-Jeong, J. and Williams, W.J. (1992) “Kernel design for reduced interference distributions”, IEEE Transactions on Signal Processing, Vol. 40, No. 2, pp. 402-412.

-Kim, Y., Chong, J.W., Chon, K.H. and Kim, J.M. (2012) “Wavelet-based AR–SVM for health monitoring of smart structures”, Smart Materials and Structures, Vol. 22, doi:10.1088/0964-1726/22/1/015003.

-Kim, J.B., Lee, E.T., Rahmatalla, S., and Eun, H.C. (2013) “Non-baseline damage detection based on the deviation of displacement mode shape data”, Journal of Nondestructive Evaluation, Vol. 32, No. 1, pp. 14- 24.

-Kunwar, A., Jha, R., Whelan, M. and Janoyan, K. (2013) “Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations”, Structural Control and Health Monitoring, Vol. 20, No. 1, pp. 1- 15.

-Li, M., Zhao, W. and Jia, W. (2010) “The profile of kernels in time frequency distributions”, Journal of Ship Mechanics, Vol. 3, No. 6, pp. 107-115.

-Lim, Jae S. and Oppenheim, Alan V. (1988) “Advanced topics in signal processing”, USA: Prentice-Hall.

-Limongelli, M. P. (2011) “The interpolation damage detection method for frames under seismic excitation”, Journal of Sound and Vibration, Vol. 330, pp. 5474–5489.

-Lo Iacono, F., Navarra, G. and Pirrotta, A. (2012) “A damage identification procedure based on Hilbert transform: Experimental validation”, Structural Control and Health Monitoring, Vol. 190, pp. 146–160.

-Matlab (The Language of Technical Computing)(2007) Version 7.6,  The MathWorks, USA.

- Melhem, H. and Kim, H. (2003) “Damage detection in concrete by Fourier and Wavelets analysis”, Journal of Engineering Mechanics, Vol. 129, No. 5, pp. 571-577.

- Mertin, Alfred (1999) “Signal analysis (Wavelets, filter bank, time-frequency transforms and applications)”, England: John Wiley & Sons Ltd.

-Michel, C. and Gueguen, P. (2010) “Time-frequency analysis of small frequency variations in civil engineering structures under weak and strong motions using a reassignment method”, Structural Health Monitoring, Vol. 9, pp. 159–171.

-Mousa, A. and Saleem, R. (2011) “Using reduced interference distributions to analyze abnormal cardiac signal”, Journal of Electrical Engineering, Vol. 62, No.3, pp.168-172.

-Parke, Gerard and Hewson, Nigel (2008) “ICE manual of bridge engineering”, UK: Thomas Telford Ltd.

-Qiao, L., Esmaeily, A. and Melhem, H. G. (2012) “Signal pattern recognition for damage diagnosis in structures”, Computer-Aided Civil and Infrastructure Engineering, Vol. 27, No. 9, pp. 699-710.

-Sakellariou, J. S. and Fassois, S. D. (2006) “Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation”, Journal of Sound and Vibration, Vol. 297, pp. 1048–1067.

-Sohn, Hoon, Farrar, Charles R., Hemez, Francois M., Shunk, Devin D., Stinemates, Daniel W. and Nadler, Brett R. (2003) “A review of structural health monitoring literature”, USA: Los Alamos National Laboratory, LA-13976-MS.

-Ville, J. (1948) “Theorie et applications de la notion de signal analytique”, Cables et Transmissions, vol. 2.A, pp. 61-74. Translated from French by Selin, I. (1958), “Theory and applications of the notion of complex signal”, USA: RAND Corporation.

- Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007) “Development  in  vibration-based  structural damage  detection  technique”, Mechanical  Systems  and  Signal  Processing, Vol.21, pp. 2198–2211.

-Zhang, Z., Hua, H., Xu, X. and Huang, Z. (2003) “Modal parameter identification through Gabor Expansion of response signals”, Journal of Sound and Vibration, Vol. 266, pp. 943-955.

-Zheng, C., Tomow, A., Kushwaha, R., Sackellares, J.C. and Williams, W. J. (1990) “Time–frequency analysis of EEG recordings with the reduced interference distribution”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 12, No. 2, pp. 857-857.

-Zhong, S. and Oyadiji, S. O. (2013) “Sampling interval sensitivity analysis for crack detection by stationary wavelet transform”, Structural Control and Health Monitoring, Vol. 20, No. 1, pp. 45- 69.

-Zonta, D., Elgamal, A., Fraser, M. and Priestley, M.J.N. (2008) “Analysis of change in dynamic properties of a frame-resistant test building”, Engineering Structures, Vol. 30, pp. 183–196.

-Zou, J. and Chen, J. (2004) “A comparative study on time-frequency feature of cracked rotor by Wigner-Ville Distribution and Wavelet Transform”, Journal of Sound and Vibration, Vol.  276, pp. 1-11.