ارزیابی رفتار راننده نسبت به شاخص‌های تصمیم‌گیری ذهن راننده در حرکت تعقیب خودرو مبتنی بر الگوهای رفتاری راننده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده فنی مهندسی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران

2 دانشیار، دانشکده فنی مهندسی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران

چکیده

اولویت بندی متفاوت ذهن راننده در انتخاب شاخص های گوناگون در حرکت تعقیب خودرو  منجر به تعیین سرعت، کاهش و افزایش شتاب متفاوت مبتنی بر رفتار متفاوت رانندگان می‌گردد. در این تحقیق سه شاخص ایمنی، راحتی و زمان سفر به عنوان شاخص های اولویت بندی ذهن راننده انتخاب شده اند. همچنین، رفتار راننده در حرکت تعقیب خودرو در آشفتگی جریان ترافیک مبتنی بر مدلتعقیب خودرو رفتاری دسته بندی شده اند. با استفاده از یک متدولوژی مسئله چندهدفه حل شده، اولویت بندی ذهن راننده در انتخاب شاخص ها وزن دهی شده اند. رفتار عملکرد وزن های تعیین شده از مدل با استفاده از شبکه عصبی ارزیابی و آنالیز شده است. نتایج ارزیابی مدل شبکه عصبی راننده پرخاشگر و محتاط رفتار متفاوتی نسبت به اولویت بندی  شاخص ها در فازهای متفاوت آشفتگی ترافیک ارائه می نمایند.  راننده پرخاشگردر خصوص اولویت بندی شاخص راحتی  در فازکاهش (افزایش) شتاب مبتنی بر تغییرات وزن دهی اولویت بندی، رفتاری افزایش ( افزایش) شتاب را نشان داد. همچنین، در خصوص اولویت بندی شاخص ایمنی مبتنی بر تغییرات وزن دهی اولویت بندی، رفتاری افزایش (افزایشی - کاهشی) شتاب و شاخص زمان سفر رفتاری افزایش (افزایش) شتاب را ارائه نمود. راننده محتاط در فاز کاهش (افزایش) شتاب در خصوص اولویت بندی شاخص راحتی مبتنی بر تغییرات وزن دهی اولویت بندی، افزایشی - کاهشی ( افزایش) شتاب رفتار نمود. همچنین، در خصوص اولویت بندی شاخص ایمنی مبتنی بر تغییرات وزن دهی اولویت بندی، رفتاری افزیش (افزایشی - کاهشی) شتاب و شاخص زمان سفر مبتنی بر افزایش (افزایش) شتاب ارائه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating driver behavior to the decision-making indices of the driver's mind in the car following based on the driver's behavioral patterns

نویسندگان [English]

  • arsalan salehikalam 1
  • Ali Abdi 2
1 Department of Engineering, Imam Khomeini International University, Qazvin, Iran
2 Department of Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

In the oscillation traffic, various factors could affect a driver’s decision to choose a different speed and decrease or increase acceleration based on different driver’s patterns of behavior. In the present study, different behavioral patterns (aggressive and cautious) is analyzed in the oscillation traffic, with regard to three mental behavior of driver (safety, comfort, and travel time). In this regard, a structured methodology was proposed to quantify the indices’ weights including a multi-objective optimization problem in which the indices were the model’s objective functions. Then, a driver’s behavior was evaluated and analyzed using a neural network. The results of evaluating the driver's behavioral performance showed that the aggressive behavioral performance in the deceleration (acceleration) phase with respect to comfort index based on changes, increasing (increasing) acceleration and safety index based on changes, a decreasing-increasing (decreasing) acceleration and travel time index based on changes is determined by decreasing (increasing) acceleration. Finding also revealed The results of evaluating the timid behavioral performance show that the timid driver behavior in the deceleration (acceleration) phase with respect to comfort index based on changes, increasing - decreasing (increasing) acceleration and safety index based on changes, increasing ( decreasing-increasing) acceleration and travel time index based on changes is determined by decreasing (increasing) acceleration.

کلیدواژه‌ها [English]

  • Driver Behavioral Pattern
  • Car-following
  • behavioral index
  • multi-objective optimization
  • artificial neural network
- Abdi, A., Saffarzadeh, M., & Salehikalam, A. (2016) "Identifying and analyzing stop and go traffic based on asymmetric theory of driving behavior in acceleration and deceleration", International journal of transportation engineering. Vol.3.No4.pp. 237-251.
 
- American Association of State Highway and Transportation Officials. (2010) “Highway safety manual “Washington, DC.
 
- Bell, M.G. and Cassir, C. (2002) "Risk-averse user equilibrium traffic assignment: an application of game theory", Transportation Research Part B: Methodological, Vol.36. No.8, pp.671-681.
 
- "Considering travelers’ risk – taking behavior in dynamic traffic assignment", In Transportation Networks: Recent Methodological Advances. Selected Proceedings of the 4th EURO Transportation Meeting Association of European Operational Research Societies , pp. 67-81. TRB.
 
- Chakravarty, T.; Ghose, A.; Bhaumik, C. (2013).
 
- "Chowdhury, A. Mobi DriveScore A system for mobile sensor based driving analysis: A risk assessment model for improving one’s driving", In Proceedings of the 2013 7th International Conference on Sensing Technology, Wellington, New Zealand, pp. 338–344.
 
- Chen, D., Laval, J., Zheng, Z., & Ahn, S. (2012) “A behavioral car-following model that captures traffic oscillations", Transportation research part B: methodologicalVol.46.No.6. pp. 744-761.
 
- Dovgan, E., Tušar, T., Javorski, M., & Filipič, B. (2012) “Discovering comfortable driving strategies using simulation-based multiobjective optimization", Informatica. Vol.36.No.3. pp. 415-502.
 
- Dovgan, E., Gams, M., & Filipič, B. (2011)” A multiobjective optimization algorithm for discovering driving strategies”, In Proceedings of the 13th annual conference companion on Genetic and evolutionary computation. Vol.34.No.2. pp. 751-754.
 
- Fu, R., Li, Z., Sun, Q. and Wang, C., 2019. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic. Accident Analysis & Prevention, Vol.132. No.1, pp.105-260.
 
- Geurs, K. T., & Van Wee, B. (2004) “Accessibility evaluation of land-use and transport strategies: review and research directions” Journal of Transport geography. Vol.12.No.2. pp. 127-140.
 
- Grant, P.R. and Haycock, B. (2008) "Effect of jerk and acceleration on the perception of motion strength", Journal of Aircraft, Vol.45. No 4, pp.1190-1197.
 
- Hellström, E., Ivarsson, M., Åslund, J. and Nielsen, L., (2009) “Look-ahead control for heavy trucks to minimize trip time and fuel consumption”, Control Engineering Practice. Vol.17. No.2. pp. 245-254.
 
- Hornik, K., Stinchcombe, M., & White, H. (1990) “Universal approximation of an unknown mapping and its derivatives using multilayer feed forward networks. Neural networks”. Vol.3.No.5. pp. 551-560.
 
- Khodayari, A., Ghaffari, A., Kazemi, R., & Braunstingl, R. (2011) “Modify car following model by human effects based on locally linear neuro fuzzy”, In 2011 IEEE Intelligent Vehicles Symposium (IV), Vol.5.No.1. pp. 661-666.
- Li, Y., Li, Z., Wang, H., Wang, W., & Xing, L. (2017) “Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways”, Accident Analysis & Prevention. Vol.10.No.2. pp. 137-145.
 
- Luo, L. H., Liu, H., Li, P., & Wang, H. (2010) “Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following”, Journal of Zhejiang University SCIENCE AVol.11. No. 3. pp. 191-201.
 
- Lighthill, M. J., & Whitham, G. B. (1955) “On kinematic waves II. A theory of traffic flow on long crowded roads”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical SciencesVol.229. No.1178. pp. 317-345.
 
- Mahmud, S. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017) “Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs”, IATSS researchVol. 41. No.4. pp. 153-163.
 
- Newell, G. F. (1962). “Theories of instability in dense highway traffic. J. Operations Research Society of Japan”Vol. 5. No.1. pp. 9-54.
 
- National Research Council (US). Transportation Research Board. Task Force on Development of the Highway Safety Manual, & Transportation Officials. Joint Task Force on the Highway Safety Manual. (2010). Highway safety manual. Vol.1. AASHTO.
 
- Nandi, A. K., Chakraborty, D., & Vaz, W. (2015) “Design of a comfortable optimal driving strategy for electric vehicles using multi-objective optimization”, Journal of Power SourcesVol. 283. No.1. pp. 1-18.
 
 
- Newell, G. F. (2002) “A simplified car-following theory: a lower order model”, Transportation Research Part B: Methodological, Vol. 36. No. 3. pp. 195-205.
 
- Ozaki, H., (1993) “Reaction and anticipation in the car-following behavior”, In Proc. of 12th International Symposium on Theory of Traffic Flow and Transportation. Vol. 16. No. 1. pp. 349-366.
 
- Orfanou, F. P., Vlahogianni, E. I., & Karlaftis, M. G. (2012) “Identifying Features of Traffic Hysteresis on Freeways”, In Transportation Research Board 91st Annual Meeting, Washington DC. Vol. 14. No. 2. pp.12-1587.
 
- Principe, J. C., Euliano, N. R., & Lefebvre, W. C. (2000) “Neural and adaptive systems: fundamentals through simulations”, pp. 672.
 
- Richards, P. I. (1956) “Shock waves on the highway”, Operations researchVol. 4. No. 1. pp. 42-51.
 
- Salehikalam, A., & Kordani, A. A. (2019) “Follower behavioural change based on natural patterns in traffic oscillation”, In Proceedings of the Institution of Civil Engineers-Transport ,Thomas Telford Ltd, Vol. 10. No. 1. pp. 1-11.
 
- Sobhani, A., Young, W., Logan, D., & Bahrololoom, S. (2011) “A kinetic energy model of two-vehicle crash injury severity”, Accident Analysis & PreventionVol. 43. No.3. pp. 741-754.
 
- Schrank, D., Eisele, B., & Lomax, T. (2012) “TTI’s 2012 urban mobility report”, Texas A&M Transportation Institute. The Texas A&M University SystemVol. 4. No.3. pp. 123-38.
 
- Schwarting, W., Alonso-Mora, J. and Rus, D.
(2018) "Planning and decision-making for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems. Vol.1. No.1. pp.187-210.
 
- Van Willigen, W., Haasdijk, E., & Kester, L. (2013) “A multi-objective approach to evolving platooning strategies in intelligent transportation systems” In Proceedings of the 15th annual conference on Genetic and evolutionary computation. Vol. 2. No.3. pp. 1397-1404.
 
- Vaiana, R.; Iuele, T.; Astarita, V.; Caruso, M.V. (2014), "Tassitani, A.; Zaffino, C.; Giofrè, V.P. Driving Behavior and Traffic Safety: An Acceleration-Based Safety Evaluation Procedure for Smartphones", Mod. Appl. Sci., Vol.8. No.1, pp. 88–96.
 
- Vollrath, M., Schleicher, S. and Gelau, C., 2011.
 
- The influence of Cruise Control and Adaptive Cruise Control on driving behaviour-A driving simulator study. Accident Analysis & Prevention, Vol.43.No.3. pp. 1134-1139
 
- Wu, Z., Liu, Y., & Pan, G. (2008) “A smart car control model for brake comfort based on car following. IEEE transactions on intelligent transportation systemsVol.  10. No.1. pp. 42-46.
 
- Wang, J., Zhang, D., Liu, J., Lu, M., & Li, K. (2010) “Multi-objective driving assistance system for intersection support”, In 13th International IEEE Conference on Intelligent Transportation Systems. Vol.  11. No.5.  pp. 348-353.
 
- Yeo, H., & Skabardonis, A. (2009) “Understanding stop-and-go traffic in view of asymmetric traffic theory”, In Transportation and Traffic Theory 2009: Golden Jubilee. Vol.  8. No.1. pp. 99-115.
 
- Yeo, H. (2008) “Asymmetric Microscopic Driving Behavior Theory”, Doctoral Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, U.S.A.
 
- Yi, K.S., Chung, J.T. (2001) "Nonlinear brake control for vehicle CW/CA systems", IEEE/ASME Transactions on Mechatronics, Vol.6. No.1. pp.17-25.
 
- Zheng, Z., Ahn, S., & Monsere, C. M. (2010) "Impact of traffic oscillations on freeway crash occurrences". Accident Analysis & Prevention. Vol. 42. No. 2. pp. 626-636.
 
- Zhang, J., & Ioannou, P. A. (2006) “Longitudinal control of heavy trucks in mixed traffic: Environmental and fuel economy considerations”, IEEE Transactions on Intelligent Transportation SystemsVol.7. No.1. pp. 92-104.
 
- Zheng, J., Suzuki, K., & Fujita, M. (2013) “Car-following behavior with instantaneous driver–vehicle reaction delay: A neural-network-based ethodology”, Transportation research part C: emerging technologies, Vol. 36. No.1. pp. 339-351.
 
- Zhao, H.; Zhou, H.; Chen, C.; Chen, J. Join. (2013) "A smart phone-based driving behavior evaluation system", In Proceedings of the IEEE Global Communications Conference, Atlanta, GA, USA, Vol. 9.No.13. pp. 48-53.
 
- Zheng, X., Huang, H., Wang, J., Zhao, X. and Xu, Q., (2019) "Behavioral decision‐making model of the intelligent vehicle based on driving risk assessment". Computer‐Aided Civil and Infrastructure Engineering, Vol.1. No.1. pp.1-15.