تثبیت بستر رسی با استفاده از ژئوپلیمر سنتز شده از سرباره، خاکستربادی، دیاتومیت و خاکستر پوسته برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده عمران، دانشگاه صنعتی سیرجان، کرمان، ایران

2 دانشجوی کارشناسی ارشد، دانشکده عمران، دانشگاه صنعتی سیرجان، کرمان، ایران

3 استادیار، دانشکده عمران، دانشگاه صنعتی سیرجان، کرمان، ایران

چکیده

هدف این تحقیق ارزیابی و مقایسه مشخصات خاک رس با خصوصیات خمیری بالای تثبیت‌شده با ژئوپلیمر سنتز شده از ضایعات صنعتی و خاکستر پوسته برنج است. در این تحقیق از سرباره کوره ذوب‌آهن، خاکستربادی و دیاتومیت به‌عنوان مادۀ پایه و از محلول سدیم هیدروکسید 8.68 مولار و محلول سیلیکات سدیم استخراج‌شده از پوسته برنج به‌عنوان محلول فعال‌کننده قلیایی جهت تثبیت استفاده‌شده است. تثبیت با استفاده از ژئوپلیمر سنتز شده بر پایۀ سرباره، خاکستربادی و دیاتومیت با درصد‌های 10، 20 و 30 درصد وزنی خاک خشک و تراکم در رطوبت بهینه و در سه زمان عمل‌آوری 7 ،28 و 90 روزه انجام شده است. نتایج به‌دست‌آمده از آزمایش‌ها نشان داد که استفاده از ژئوپلیمر به‌عنوان تثبیت‌کننده باعث بهبود مقاومت فشاری و کششی، افزایش مدول یانگ و کاهش کرنش شکست خاک می‌شود. بیشترین میزان افزایش مقاومت فشاری مربوط به خاک رس تثبیت‌شده با ژئوپلیمر سنتز شده با 30 درصد سرباره بوده است که نسبت به نمونۀ تثبیت نشده به میزان 2/25 برابر افزایش مقاومت داشته است. همچنین نمونه‌های تثبیت‌شده با ژئوپلیمر سنتز شده با 30 درصد خاکستربادی و 30 درصد دیاتومیت به ترتیب نسبت به نمونه تثبیت نشده 05/4 و 72/12 برابر مقاومت فشاری بیشتری داشتند. نتایج این تحقیق همچنین نشان داد که تثبیت خاک رس با استفاده از ژئوپلیمر سبب افزایش قابل ملاحظۀ مقاومت کششی نمونه‌ها می‌شود، به‌طوری‌که نمونه‌های تثبیت‌شده با ژئوپلیمر 30 درصد سرباره، 30 درصد خاکستربادی و 30 درصد دیاتومیت به ترتیب نسبت به نمونه تثبیت نشده 14/23 ، 58/7 و 5/12 برابر مقاومت کششی بیشتری داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Stabilization of Clay Subgrade using Geopolymer Synthesized from Slag, Fly-Ash, Diatomite and Rice Husk Ash

نویسندگان [English]

  • Ali Reza Ghanizadeh 1
  • Koroush Mirzaei 2
  • Somayeh Bakhtiari 3
1 Department of Civil Engineering, Sirjan University of Technology, Sirjan
2 Department of Civil Engineering, Sirjan University of Technology, Sirjan
3 , Department of Civil Engineering, Sirjan University of Technology, Sirjan
چکیده [English]

This paper aims to investigate and compare the properties of highly plastic clay soil stabilized by geopolymers synthesized from various industrial residues and rice husk ash. To this end, steel slag, fly-ash and diatomite were used as the base material, and NaOH solutions of 8.68 M and Na2SiO3 solutions extracted from rice husk ash were used as an alkaline activator for stabilization. Stabilization was performed using 10, 20 and 30 percent of base materials by dry weight of soil. Samples were compacted at optimum moisture content and were cured for 7, 28 and 90 days. The results of the experiments show that the application of geopolymer as a stabilizer improve the compressive and tensile strength, increase Young's modulus and reduce the failure strain of the stabilized clay soil. The highest increase in the unconfined compressive strength (UCS) was related to stabilized clay with geopolymer synthesized using 30% of steel slag, its UCS was 25.2 times higher than the untreated clay soil. Also, the samples stabilized with geopolymer synthesized using 30% of fly-ash and 30% of diatomite showed the UCS of 4.05 and 12.72 times more than the untreated clay soil, respectively. The results of this study also showed that the stabilization of clay using geopolymer significantly increases the indirect tensile strength (ITS) of the samples, so that the samples stabilized with geopolymers based on the 30% of steel slag, 30% of fly-ash and 30% of diatomite, had an ITS of  23.14, 7.58 and 12.5 times more than untreated clay soil, respectively.

کلیدواژه‌ها [English]

  • Clayey Subgrade
  • Compressive and Tensile Strength
  • Geopolymer
  • Diatomit
  • Rice Husk Ash
- Abdila, S. R., Abdullah, M. M. A. B., Tahir, M. F. M., Ahmad, R., & Isradi, M. 2020, May. Characterization of Fly ash and Ground Granulated Blast Slag for Soil Stabilization Application Using Geopolymerization Method. Materials Science and Engineering, 389: 1-9.
                                                                                         
- Abdullah, H. H., Shahin, M. A., & Sarker, P. 2017. Stabilisation of Clay with fly-ash geopolymer incorporating GGBFS. In Proceedings of the second Proceedings of the Second World Congress on Civil, Structural and Environmental Engineering. Barcelona, Spain, 1-8.
 
- Abdullah, H. H., Shahin, M. A., & Walske, M. L. (2019). Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils and Foundations. 59: 1906–1920. ‏
 
- Adhikari, S. (2017). Mechanical properties of soil-RAP-geopolymer for the stabilization of road base/subbase. PhD Dissertation, University of Louisiana.
 
‏- Al Bakri Abdullah, M. M., Kamarudin, H., Abdulkareem, O. A., Ghazali, C. M. R., Rafiza, A. R., & Norazian, M. N. (2012). Optimization of alkaline activator/fly ash ratio on the compressive strength of manufacturing fly ash-based geopolymer. Mechanics and Materials, 110: 734-739.
 
- Arulrajah, A., Yaghoubi, M., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Leong, M. (2018). Evaluation of fly ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58: 1358-1370.
 
‏- ASTM International. (2016). ASTM D 422: Standard Test Method for Particle-Size Analysis of Soils. In Annual book of ASTM standards 2016 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2014). ASTM D 4318: Standard Test Methods for Liquid Limit, Plastic Limit, & Plasticity Index of Soils. In Annual book of ASTM standards 2014 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
- ASTM International. (2014). ASTM D 854: standard test methods for Specific Gravity of Soil Solids by Water Pycnometer on Soil. In Annual book of ASTM standards 2014 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2015). ASTM D 1557: standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). In Annual book of ASTM standards 2015 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2015). ASTM D 2166: standard Test Method for Unconfined Compressive Strength of Cohesive Soil. In Annual book of ASTM standards 2015 (pp. 19428-2959). West Conshohocken, PA: American Society
 
- ASTM International. (2015). ASTM D 2487: Standard Test Method Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). In Annual book of ASTM standards 2015 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2015). ASTM D 3282: Standard Test Method Practice for Classification of Soils & Soil-Aggregate Mixtures for Highway Construction Purposes. In Annual book of ASTM standards 2015 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2014). ASTM C 496: Standard Test Method Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. In Annual book of ASTM standards 2014 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2015). ASTM D 1883: . Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. In Annual book of ASTM standards 2015 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- ASTM International. (2013). ASTM D 4972: Standard Test Method Method for pH of Soils. In Annual book of ASTM standards 2013 (pp. 19428-2959). West Conshohocken, PA: American Society for Testing & Materials.
 
- Biswal, D.R., Sahoo, U.C. and Dash, S.R. (2017).Strength and stiffness studies of cement stabilized granular lateritic soil. In International Congress and Exhibition" Sustainable Civil Infrastructures:Innovative Infrastructure Geotechnology" Springer, Cham 320-336.
 
- Ghanizadeh, A. R., Yarmahmoudi, A., & Abbaslou, H. (2020). Mechanical Properties of Low Plasticity Clay Soil Stabilized with Iron Ore Mine Tailing and Portland Cement. Journal of Mining and Environment, 11: 837-853.‏
 
- Dhakar, S., JAIN, S. (2020). Improving Clay of Intermediate Plasticity for Rural Road Sub-Grades – A Case Study. International Journal of Transportation Engineering, 8(2), 133-148.
 
- Dexter, A. R., & Kroesbergen, B. (1985). Methodology for determination of tensile strength of soil aggregates. Journal of Agricultural Engineering Research, 31, 139-147.‏
 
- Ding, Y. C., Cheng, T. W., & Dai, Y. S. J. S. C. (2017). Application of geopolymer paste for concrete repair. Journal of Structural Concrete, 18:561-570.
 
- Gao, K., Lin, K. L., Wang, D., Hwang, C. L., Tuan, B. L. A., Shiu, H. S., & Cheng, T. W. (2013). Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and building materials, 48, 441-447.‏
 
‏- Hu, W., Nie, Q., Huang, B., Su, A., Du, Y., Shu, X., & He, Q. (2018). Mechanical property and microstructure characteristics of geopolymer stabilized aggregate base. Construction and Building Materials, 191: 1120-1127.
 
- Huang, Yi and Han, Minfang (2011). The influence of Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products, Journal of Hazardous Materials, 193: 90–94.
 
‏- Kakali, G., Kioupis, D., Skaropoulou, A., & Tsivilis, S. (2018). Lightweight geopolymer composites as structural elements with improved insulation capacity. MATEC Web of Conferences. Rabat, Morocco, 1-4.
 
- Kwad, N. F., Abdulkareem, A. H., & Ahmed, T. M. (2020). The Effect of Fly Ash Based Geopolymer on the Strength of Problematic Subgrade Soil with High CaO Content. In Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements. Zurich Switzerland, 539-551.
 
- Murmu, A. L., Dhole, N., & Patel, A. (2020). Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Materials and Pavement Design, 21: 867-885.
 
‏- Nergis, D. B., Abdullah, M., Vizureanu, P., & Tahir, M. (2018). Geopolymers and Their Uses. Paper presented at the IOP Conference Series: Materials Science and Engineering. Lasi, Romania, 1-10.
 
- Nikolić, I., Zejak, R., Radmilović, V., Blečić, D., & Tadić, M. (2012). Geopolymerization of fly ash as a possible solution for stabilization of used sandblasting grit. Zaštita materijala, 53: 243-246.
 
- Saride, S., & Dutta, T. T. (2016). Effect of fly-ash stabilization on stiffness modulus degradation of expansive clays. Journal of Materials in Civil Engineering, 28: 1-12.
 
- Shalabi, F. I., Asi, I. M., & Qasrawi, H. Y. (2017). Effect of by-product steel slag on the engineering properties of clay soils. Journal of King Saud University-Engineering Sciences, 29: 394-399.‏
 
- Swain, K. (2015). Stabilization of soil using geopolymer and biopolymer. Ms Thesis, National Institute of Technology, Rourkela.
 
- Trautman R.L. (2005), Geopolymers with the Potential for Use as Refractory Castables, Advances in Technology of Materials and Materials Processing, 7: 187–190.
 
‏- Temuujin, J. v., Van Riessen, A., & Williams, R. J. J. o. h. m. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167: 82-88.
 
- Trinh, S. H., & Bui, Q. A. T. J. I. J. o. A. E. R. (2018). Influencing of Clay and Binder Content on Compression Strength of Soft Soil Stabilized by Geopolymer Based Fly Ash. Applied Engineering Research, 13: 7954-7958.
 
- Wattanachai, P., & Suwan, T. (2017). Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview. In IOP Conference Series: Materials Science and Engineering. Lisbon, Portugal, 1-6.
 
- Wijaya, S. W., & Hardjito, D. (2016). Factors affecting the setting time of fly ash-based geopolymer. Materials Science Forum, 841: 90-97.
 
- Yaghoubi, M., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Darmawan, S. (2018). Effects of industrial by-product based geopolymers on the strength development of a soft soil. Soils and foundations, 58: 716-728.
 
- Yaghoubi, M., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Darmawan, S., & Wang, J. (2019). Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 167: 33-42.
 
- Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47: 1468-1478.