Evaluation of mechanical properties and durability of geopolymer concrete pavement fly ash and siflica fume

Document Type : Scientific - Research

Authors

1 استاد، گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه سمنان

2 hagh way and transportation semnan

Abstract

In recent years, using too much cement has led to the production of greenhouse gases, one of the consequences was the heating of the earth. These destructive effects lead to more attention to the use of pozzolanic materials. In this study, the durability of geopolymer concrete (active alkali slag) containing silica fume and fly ash against corrosive acidic, sulfate and compressive strength, flexural strength, tensile strength, and chloride ion permeability were investigated. The corrosive properties of different environments by the compressive strength and weight loss tests were compared. After 7 days of operation in lime water, samples were placed in sulfuric acid solution, magnesium sulfate, and sodium sulfate for 180 days. At first, the weight loss of the samples, then the compressive strength of the samples after exposure to the medium corrosive was measured. The compressive strength, flexural strength, tensile strength, and chloride ion permeability were also measured. In this study, increasing the of silica fume and fly ash alternatives instead of slag in concrete, compressive strength, flexural strength, tensile strength, and durability and chloride ion permeability increased; In fact, the best sample is pure slag geopolymer concrete, which has a compressive strength of 53.45 MPa, flexural strength of 6.05 MPa, tensile strength of 5.5 MPa, chloride ion flow rate of 6067 Coulombs and compressive strength after placement in sulfuric acid, magnesium sulfate, and sodium sulfate are 43.92, 44.8 and 45.9 MPa, and also the weight loss after placing in these solutions is 21, 14 and 12 grams respectively.

Keywords

Main Subjects


باقری ، ع.، زنگنه، ح. (1391)" . مقایسه عملکردی روش RCMT برای ارزیابی سریع مقاومت بتن در برابر نفوذ یون کلر با روش­های RCPT و مقاومت الکتریکی . " مجله علمی پژوهشی عمران مدرس، دوره دوازدهم، شماره سه، ص. 112-103.
 
رمضانیان­پور، ع.، ذوالفقارنسب، آ. بهمن­زاد، ف. رمضان­یانپور، ا. (1397)، "اثر سرباره گرانوله شده کوره قوس الکتریکی بر دوام بتن در برابر حمله سولفاتی ." نشریه مهندسی عمران امیرکبیر، دوره پنجاه، شماره چهار، ص. 138-121.
 
Alexander, M. and Fourie, C. (2011) “Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack”. Materials and structures., Vol.44, PP. 313-330.
 
Alexander, M., Bertron. A, and De Belie, N. (2013) “Performance of cement-based materials in aggressive aqueous environments”. Springer Civil engineering., 56.
 
Allahverdi, A. and Skvara, F. (2000) “Acidic corrosion of hydrated cement based materials”. Ceramics− Silikaty., Vol.44, 152-160.
 
ASTM C1202-18. (2018) “Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration”. ASTM International.
 
ASTM C171-16. (2016) “Standard Specification for Sheet Materials for Curing Concrete”. ASTM International.
 
ASTM C33-03. (2003) “Standard Specification for Concrete Aggregates”. ASTM International.
ASTM C496-96. (1996) “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens”. ASTM International.
 
ASTM C78-09. (2009) “Standard test method for flexural strength of concrete (using simple beam with third-point loading)”. ASTM International.
 
Aydın, S., Yiğiter. H, and Baradan, B. (2008) “Sulfuric acid resistance of high-volume fly ash concrete”. Building and Environment., Vol.42, 717-721.
 
Z. T., Song, X., Munn. R, and Marosszeky, M. (2005) “Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack”. Cement and Concrete Research., Vol.35, PP. 1486-1494.
 
Deb, P.S., Nath. P, and Sarker, P.K. (2014) “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature”. Materials & Design., Vol. 62, PP. 32-39.
 
Elyamany, H. E., Eloaty. A, and Elshaboury, A.(2018). “Magnesium sulfate resistance of geopolymer mortar”. Journal of Construction and Building Materials., Vol. 184, PP. 111-127.
 
EN, BS 1889-116. (1983) “Standard Testing Hardened Concrete, Method for Determination of Compressive Strength of Concrete Cubes”.
 
Hewayde, H., Nehdi, M., Allouche. E, and Nakhla, G. (2007) “Effect of mixture design parameters and wetting-drying cycles on resistance of concrete to sulfuric acid attack”. Journal of materials in Civil Engineering., Vol. 19, PP. 155-163.
 
I., Bernal, S., Provis. J., Nicolas. R. S., Brice, D. G., Kilcullen. A. R., Hamden. S, and Deventer, J., (2013) “Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes”. Journal of Construction and Building Materials., Vol. 48, PP. 1187-1201.
 
Monteny, J.,Vince, E., Beeldens. A., De Belie, N., Taerwe. L., Gemert. D, and Verstraete, W., (2000). “Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete”. Cement and Concrete Research., Vol. 30, PP. 623-634.
 
Monteny, J., De Belie. N, and Taerwe, L. (2003) “Resistance of different types of concrete mixtures to sulfuric acid”. Materials and Structures., Vol.36, PP. 242-249.
 
Neupane, K., Chalmers. D, and Kidd, D. (2018) “High-Strength Geopolymer Concrete- Properties, Advantages and Challenges”. Journal of Advances in Materials., Vol.7, PP. 15-25.
 
Rahmani, H. and Ramazanianpour, A. (2008) “Effect of binary cement replacement materials on sulfuric acid resistance of dense concretes”. Magazine of concrete research., Vol.60, PP. 145-155.
 
Rajini, B. and Rao, A. N. (2014) “Mechanical properties of geopolymer concrete with fly ash and ggbs as source materials”. International Journal of Innovative Research in Science, Engineering and Technology., Vol.3, PP. 15944-15953.
 
Ramezanianpour, A.A. (2014) “Fly ash, in Cement replacement materials”. Springer Geochemistry Mineralogy., Vol.47, PP. 148-156.
 
Y., Escadeillas, G., Mouli. M., Khelafi. H, and Benosman, A. S. (2014) “Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar”. Powder technology., Vol.254, PP. 314-323.
 
Sersale, R., Frigione. G, and Bonavita, L. (1998) “Acid Depositions and Concrete Attack: Main Influences 1”. Cement and Concrete Research., Vol.28, PP. 19-24.
 
Shahrajabian, F. and Behfarnia, K. (2018) “The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete”. Journal of Construction and Building Materials., Vol.176, PP. 172-178.
 
E., Wanseele, E., Monteny. J., Beeldens. A., De Belie, N., Taerwe. L., Gemert. D, and Verstraete, W., (2002) “Influence of polymer addition on biogenic sulfuric acid attack of concrete”. International biodeterioration & biodegradation., Vol.49, PP. 283-292.
 
Wang, H., Li. H, and Yan, F. (2005) “Synthesis and mechanical properties of metakaolinite-based geopolymer”. Colloids and Surfaces A: Physicochemical and Engineering Aspects., Vol.268, PP. 1-6.
 
W., Yao, X., Yang. T, and Zhang, Z. (2018) “The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid”. Journal of Construction and Building Materials., Vol.186, PP. 1177-1187.