بررسی تاثیر دما و سرعت بار متحرک بر پاسخ روسازی انعطاف‌پذیر با رفتار ویسکوالاستیک با استفاده از مدل 3 بعدی اجزای محدود

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، دانشکدة مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

2 استادیار، دانشکدة مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

3 دانشجوی دکتری، دانشکدة مهندسی هوا فضا، دانشگاه صنعتی مالک اشتر، تهران

چکیده

این مقاله اهمیت استفاده از مدل شبیه سازی سه بعدی اجزای محدود را به منظور محاسبه پاسخ روسازی انعطاف پذیر با رفتار ویسکوالاستیک تحت بارگذاری متحرک با سرعت‌های متفاوت و در دماهای مختلف بارگذاری نشان می‌دهد. مدل سه بعدی اجزای محدود با استفاده از نرم افزار آباکوس ساخته شد. در مدل شبیه سازی شده، بار متحرک به صورت بارهای تکه‌ای در گره‌های متوالی در طول مسیر حرکت با توجه به سرعت حرکت بار در نظر گرفته شده است. به منظور به حداقل رساندن تاثیر لبه‌های مدل روسازی بر دقت نتایج از مرزهای خاموش استفاده شده است. برای شبیه سازی مرزهای خاموش از مش‌های بی‌نهایت در مرزهای بیرونی مدل استفاده شده است. رفتار ویسکوالاستیک لایه آسفالتی نیز به صورت مدل تعمیم یافته ماکسول در قالب سری پرونی لحاظ شده است. ابتدا دقت  مدل شبیه سازی شده آباکوس  در این پژوهش  با استفاده از مقالهChen  و همکاران که یک روسازی ویسکوالاستیک چندلایه را به روش تحلیلی مورد مطالعه قرار داده است اعتبارسنجی شده و سپس  پاسخ روسازی انعطاف پذیر تحت سرعت های متفاوت وسیله نقلیه در حال حرکت و در دماهای متفاوت بارگذاری مورد مطالعه قرار گرفته است. نتایج نشان می‌دهد که افزایش دما و کاهش سرعت باعث افزایش پاسخ روسازی مطالعه شده می‌گردد. همچنین نتایج تحلیل در امتداد مسیر بارگذاری نشان داد که کرنش‌های طولی به صورت کششی و کرنش‌های عرضی هم به صورت کششی و هم به صورت فشاری می تواند ظاهر شود.

کلیدواژه‌ها

موضوعات


-Abaqus, I. (2008) “Analysis User's Manual Volume V, Prescribed conditions, constraints and interactions”, Journal of Biomedical Science and Engineering, Vol.6, No. 11, pp. 898.
-Alkasawneh, W., Pan, E., Han, F., Zhu, R.  and Green, R. (2007) “Effect of temperature variation on pavement responses using 3D multilayered elastic analysis”, International Journal of Pavement Engineering, Vol. 8, No. 3, pp. 203-212.
-Al-Qadi, I., Wang, H. andTutumluer, E. (2010) “Dynamic analysis of thin asphalt pavements by using cross-anisotropic stress-dependent properties for granular layer” Transportation Research Record: Journal Of The Transportation Research Board, No. 2154, pp. 156-163.
-Al-Qadi, I. L., Wang, H., Yoo, P. J., and Dessouky, S. H. (2008) “Dynamic analysis and in situ validation of perpetual pavement response to vehicular loading” Transportation research record, Vol.2087, No. 1, pp. 29-39.
-Ameri, M., Malakouti, M.,Malekzadeh, P. (2014) “Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method” Mechanics of Time-Dependent Materials, Vol.18, No. 1, pp. 275-291.
-Bodin, D., Chupin, O.,Denneman, E. (2017) “Viscoelastic asphalt pavement simulations and simplified elastic pavement models based on an “equivalent asphalt modulus” concept” Journal of Testing and Evaluation, Vol.45, No. 6, pp. 1887-1895.
-Bodin, D., Chupin, O. and Denneman, E.  (2016) “Effect of temperature and traffic speed on the asphalt moduli for fatigue cracking and pavement structural design considerations” In 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements, pp. 397-402, Springer, Dordrecht.
-Chen, E. Y., Pan, E., Norfolk, T. S. and Wang, Q. (2011) “Surface loading of a multilayered viscoelastic pavement: Moving dynamic load” Road Materials and Pavement Design, Vol.12, No. 4, pp. 849-874.
-de Araújo, P. C., Soares, J. B., de Holanda, Á. S., Parente, E. and Evangelista, F. (2010) “Dynamic viscoelastic analysis of asphalt pavements using a finite element formulation” Road Materials and Pavement Design, Vol.11, No. 2, pp. 409-433.
-Deng, Y., Luo, X., Gu, F., Zhang, Y. and Lytton, R. L. (2018) “3-D Simulation of Deflection Basin of Flexible Pavements Under High-Speed Moving Loads” Transportation Research Board 97th Annual Meeting, Washington DC, United States, 2018-1-7 to 2018-1-11.
-Duncan, J. M., Monismith, C. L. and Wilson, E. L. (1968) “Finite element analysis of pavements”, Highway Research Record, Vol.228, pp. 18-33.
-Eslaminia, M. and Guddati, M. N. (2016) “Fourier-finite element analysis of pavements under moving vehicular loading”,  International Journal of Pavement Engineering, Vol.17, No. 7, pp. 602-614.
-Feng, S.-J., Li, Y.-C., Chen, H.,Chen, Z.-L. (2017) “Response of pavement and stratified ground due to vehicle loads considering rise of water table” International Journal of Pavement Engineering, No., pp. 1-13.
-Han, D., Zhu, G., Hu, H. and Li, L. (2018) “Dynamic simulation analysis of the tire-pavement system considering temperature fields”, Construction and Building Materials, Vol.171, No., pp. 261-272.
-Helwany, S., Dyer, J. and Leidy, J. (1998) “Finite-element analyses of flexible pavements”, Journal of Transportation Engineering, Vol. 124, No. 5, pp. 491-499.
-Huang, Y. (2017) “Evaluating pavement response and performance with different simulative tests”, Dissertation, Advisor: Linbing Wang, Virginia.  
-Judycki, J. (2018) “A new viscoelastic method of calculation of low-temperature thermal stresses in asphalt layers of pavements”, International Journal of Pavement Engineering, Vol.19, No. 1, pp. 24-36.
-Kazemi, S.-F., Sebaaly, P. E., Siddharthan, R. V., Hajj, E. Y., Hand, A. J. and Ahsanuzzaman, M. (2017) “Dynamic pavement response coefficient to estimate the impact of variation in dynamic vehicle load” Tenth International Conference on the Bearing Capacity of Roads, Railways and Airfields, Greece (Athenes): 28-06-2017 - 01-07-2017.
-Kim, M. (2007) “Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior”, Dissertation, Advisor: Erol Tutumluer, University of Illinois, Urbana.
-Kuo, C. M. and Chou, F. J. (2004) “Development of 3‐D finite element model for flexible pavements” Journal of the Chinese Institute of Engineers, Vol.27, No. 5, pp. 707-717.
-Liu, P., Wang, D.,Oeser, M. (2017) “Application of semi-analytical finite element method to analyze asphalt pavement response under heavy traffic loads”, Journal of traffic and transportation engineering (English edition), Vol.4, No. 2, pp. 206-214.
-Lv, P., Tian, R. and Liu, X. (2010) “Dynamic response solution in transient state of viscoelastic road under moving load and its application” Journal of Engineering Mechanics, Vol.136, No. 2, pp. 168-173.
-Maadani, O. and Abd El Halim, A. O. (2017) Impact of Asphalt Concrete Temperature and Traffic Loading Speed on Structural Behavior of Flexible Pavement. In TAC 2017: Investing in Transportation: Building Canada's Economy--2017 Conference and Exhibition of the Transportation Association of Canada.
-Malakouti, M., Ameri, M. and Malekzadeh, P. (2014) “Dynamic viscoelastic incremental-layerwise finite element method for multilayered structure analysis based on the relaxation approach” Journal of Mechanics, Vol.30, No. 6, pp. 593-602.
-Malakouti, M., Ameri, M.,Malekzadeh, P. (2014) “Incremental layerwise finite element formulation for viscoelastic response of multilayered pavements” International Journal of Transportation Engineering, Vol.1, No. 3, pp. 183-198.
-Mulder, W. (1997) “Experiments with Higdon's absorbing boundary conditions for a number of wave equations” Computational Geosciences, Vol.1, No. 1, pp. 85.
-Rameshkhah, S., Malakouti Olounabadi, M., Malekzadeh, P.,Meraji, S. H. (2018) “Dynamic response analysis of viscoelastic pavement using differential quadrature element method” International Journal of Pavement Engineering.
-Sarkar, A. (2016) “Numerical comparison of flexible pavement dynamic response under different axles” International Journal of Pavement Engineering, Vol.17, No. 5, pp. 377-387.
-Secor, K. E.,Monismith, C. L. (1961) “Analysis of triaxial test data on asphalt concrete using viscoelastic principles” Highway Research Board Proceedings, Vol.40, pp. 295-314.
-Tautou, R., Picoux, B. and Petit, C. (2017) “Temperature Influence in a Dynamic Viscoelastic Modeling of a Pavement Structure” Journal of Transportation Engineering, Part B: Pavements, Vol.143, No. 3.
-Wang, D. (2011) “Analytical approach to predict temperature profile in a multilayered pavement system based on measured surface temperature data” Journal of Transportation Engineering, Vol.138, No. 5, pp. 674-679.
-White, T., Zaghloul, S., Anderton, G. and Smith, D. (1997) “Pavement analysis for moving aircraft load” Journal of transportation engineering, Vol.123, No. 6, pp. 436-446.
-Wolf, J. and Hall, W. (1988) “Soil-structure-interaction analysis in time domain”,  A Division of Simon and Schuster.
-Yang, N. C. (1972) “Design of functional pavements”, McGraw-Hill Companies.
-Yoder, E. J.,Witczak, M. W. (1975) “Principles of pavement design”,  John Wiley and Sons.
-Yoo, P. J. and Al-Qadi, I. L. (2007) “Effect of transient dynamic loading on flexible pavements”, Transportation Research Record, Vol.1990, No. 1, pp. 129-140.
-Zafir, Z., Siddharthan, R. and Sebaaly, P. E. (1994) “Dynamic pavement-strain histories from moving traffic load”,  Journal of Transportation Engineering, Vol.120, No. 5, pp. 821-842.
-علون آبادی, م., رامش خواه, سینا., ملک زاده, پ., معراجی, س ح., (2018) “پاسخ شبه‌استاتیکی روسازی آسفالتی لایه‌ای با رفتار ویسکوالاستیک به روش المان دیفرانسیل کوادرچر” فصلنامه علمی-پژوهشی مهندسی حمل و نقل.