مدل اساسی پیشبینی رفتار خرابی مدار خط در علائم الکتریکی راه آهن

نوع مقاله : علمی - پژوهشی

نویسنده

کمیته راهبردی استقرار نت فنی و زیربنایی، راه آهن جمهوری اسلامی ایران، تهران، ایران

چکیده

آماده بکاری روسازی راه آهن شرط بلا منازع بهره برداری از آن در ارائه خدمات حمل و نقل ریلی است. از آنجا که توقعات عمومی در خدمات برنامه ریزی شده بخصوص در جابجایی مسافرفاقد پذیرش وقفه ای برای عملیات نگهداری است اقدام پیشگیرانه برای رفع ازکارافتادگی روسازی از اهمیت ویژه ای برخوردارمی گردد. از بین تجهیرات روسازی مدار خط که ازکارافتادگی آن تقریبا معادل از کارافتادگی خط است, ناشناخته ترین رفتار را برای پیشبینی وقوع زمان از کارافتادگی دارد تحقیقات انجام شده هیچگاه پاسخ مستقیمی به برآوردی از پیشبینی زمان وقوع خرابی مدار خط و یا علائم الکتریکی یک ایستگاه در حالت جامع شرایط ذاتی تجهیز،  شرایط بهره برداری تجهیز و  وضعِت نگهداری تجهیز نداشته اند و غالبا در فضایی  محدود از شرایط کاری خلاصه و ساده سازی شده موضوع را بررسی کرده اند. مدل اساسی پیشبینی رفتار خرابی مدار خط برپایه تخمین توابع توزیع چگالی و تجمعی احتمال خرابی و قابلیت اطمینان آن قرار دارد. این تخمین از آنجا معتبر می گردد که توابع آماری مورد نظر با متوسط گیری روی تعداد زیادی پیشامد در شرایط واقعی محاسبه و اعتبار آن با روشهای نظری استاندارد تایید می گردد. برای مطالعه ی موردی مدار خط ایستگاه راه آهن تهران انتخاب شده است که تخمین تابع توزیع تجمعی خرابی آن براساس تحلیل آمار حدود ده سال گزارش از کار افتادگی آن دست می آید. این تخمین  بر مدل توزیع  ویبل برازش شده تا پارامترهای شکل, مقیاس و مبدا مدل رفتار خرابی مدار خط بدست آید.  نتایج بدست آمده با پذیرش 5 درصد خطا در برازش حاکی از آن است که مدار خط ایستگاه راه آهن تهران  با متوسط زمان بین دو خرابی برابر با 7/2 روز برای 7/1 روز, 5/7 روز و 11 روز از زمان شروع کار بعد از رفع هر خرابی بترتیب با احتمال 50 درصد, 10 درصد و 5 درصدبا خرابی مواجه نحواهد شد.

کلیدواژه‌ها

موضوعات


یقینی، مسعود، غفرانی، فائزه، ملا، سمیه، عامره ، مهدی و جوانبخت، بهاره (1394)،" تحلیل داده‌های خرابی تجهیزات علائم در راه‌آهن ایران با استفاده از تکنیک های داده کاوی" ، پژوهشنامه حمل و نقل، دوره 11، ص. 379-389
- Arno, R., Dowling, N., Fairfax, S., Schuerger, R. J. and Weber (2015) "What is RCM and how could it be applied to the critical loads?", IEEE Transactions on Industry Applications, Vol.51, Issue 3, pp.2045-2053.
-  Bruin, T.,  Verbert. K. and Babuska, R. (2017) '' Railway track circuit fault diagnosis using recurrent neural networks", IEEE Trans. on Neural Networks and Learning Systems, Vol. 28,  Issue  3, pp. 523-533.
- EEIG ERTMS Users Group (1998) "ERTMS/ETCS RAMS Requirements Specification", EEIG, 1988.
- EN 50126 (1999) "The specification and demonstration of reliability, availability, maintainability and safety (RAMS) for railways applications", Comité Européen de Normalisation Electrotechnique (CENELEC), Brussels, Belgium, 1999.
- Campbell, J. D. and Jardine, A. (2001) "Maintenance excellence: optimizing equipment life-cycle decisions", New York, Marcel Dekker.
- Chen, J., Roberts, C. and Weston, P. (2008) "Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems", Control Engineering Practice, Vol.16, pp. 585-596.
Dehardt, J. (1971) "A generalization of the Glivenko-Cantelli Theorem", The Annals of Mathematical Statistics , Vol. 42, No. 6, pp. 2050-2055.
- Filler, F. (1943) "On the Kolmogorov Smirnov Theorems for Empirical Distribution", Giorn Inst. Ital. Attuari, Vol. 4, pp. 83-91.
- Henley, E. J. and Kumamoto, H., (1991) "Probabilistic risk assessment," IEEE Press.
- Jiang  Lei, Wang, Xi  and Liu, Yi (2016) "Reliability assessment of ZPW-2000A track circuit using Bayesian network",  IEEE Int. Conf. Reliability, Maintenance and  Safety (ICRMS), pp. 1-4.
- Johnson, L. G. (1964) "The statistical treatment of fatigue experiments", NewYork, Elsevier.
-Kaplan, E. L. and Meier, P. (1958) "Nonparametric estimation from incomplete observations", J. Amer. Statist. Assn., Vol. 53 No. 282, pp. 457–481.
-  Lalouette,  J. , Caron, R., Scherb, F., Brinzei, N., Aubry, J. and  Malassé, O. (2010)  "Performance assessment of european railway signalling system superposed of the French system in the presence of failures", Lamda-Mu’ 2010, Vol. 2, La Rochelle, France, pp. 2–9.
- Marsaglia, G., Tsang, W. and Wang, J. (2003) “Evaluating Kolmogorov’s Distribution", Journal of Statistical Software Vol. 8 No. 18, pp. 1–4.
- Márquez, C. A. (2007) "The maintenance management framework",  Chapter 4, pp. 49-67, Springer.
-Novak, P., Danhel, M., Blazek, R. B., Kohlic, M. and Kubatova, H. (2017) “Predicting the life expectancy of railway fail-safe signaling systems using dynamic models with censoring", IEEE Int. Conf.  on Soft. Qual. And Sec. (QRS), pp. 329-339.
- Nystrom, B. (2009) "Use of availability concepts in the railway system”, International Journal of Performability Engineering", Vol. 5, No. 2, pp.103-118.
- Papoulis, A. and Pillai, S. U. ( 2002) "Probability, random variables, and stochastic processes", (4th ed.), Boston: McGraw-Hill.
- Patra, A.P. and Kumar, U. (2010) '' Availability analysis of railway track circuit'', Proceedings of the Institution of Mechanical Engineers Part F. Journal of Rail and Rapid Transit , Vol. 224, No. 3, pp. 169-177.
- Saadat, A. (2018) ''Basic prediction model of railway track circuit failure'', Advances in Railway Engineering, Vol. 1, No. 3, pp. 45-55.
- Saad, J. A. and Saralees, N. (2014) '' Modifications of the Weibull distribution: A review'', Reliability Engineering & System Safety, Vol. 124, pp. 32-55.
-  Qiu, S.,  Sallak, M., Schِn, W. and Cherfi-Boulanger, Z. (2014) '' Availability assessment of railway signalling systems with uncertainty analysis using Statecharts", Simul. Model.Prac. and Theory. No. 47, pp. 1-18.
- Vernez, D.  and Vuille, F. (2009) ''Method to assess and optimise dependability of complex macro-systems: Application to a railway signalling system", Safety Sci. Vol. 47, Issue 3, pp. 382–394.
-  Wang, Xi,  Guo, Jin, Jiang, Lei, Fu, Ji. and Li, Bin (2016) ''Intelligent fault diagnosis and prediction technologies for condition based maintenance of track circuit" , IEEE Int. Conf. on Intell. Rail Trans. (ICIRT), pp. 276-283.
- Weibull, W. (1951) "A statistical distribution function of wide application", ASME, paper 51-A-6.