بکارگیری الگوریتم های تطبیق نقشه به‌منظور استخراج اطلاعات ترافیکی از خطوط سیر حاصل از GPS با نرخ نمونه‌برداری پایین

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

2 استادیار دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

چکیده

از میان روش­های مختلف جمع­آوری اطلاعات ترافیکی،GPS  به علت هزینه پایین‌تر، دسترسی و فراوانی بیشتر، از محبوبیت خاصی برخوردار است. عامل اصلی اطمینان از پارامترهای ترافیکی محاسبه‌شدهاز خطوط سیرGPS، اطلاع از مکان صحیح خودرو بر روی قطعات جاده است. این عمل کلیدی توسط الگوریتم­های تطبیق نقشه صورت می­گیرد.درصد بالایی از خطوط سیر­ GPS  تولید شده از GPS تلفن همراه،خودروهای مجهز به GPS،ناوگان حمل­و­نقل عمومی و شبکه­های اجتماعی با نرخ نمونه­برداری پایین دو تا شش دقیقه تولید می­شوند. بنابراین تعیین یک الگوریتم تطبیق نقشه مناسب برایکاهش خطای داده­های مذکور ضروری بنظر می­رسد. در این مقاله هدف، معرفی، مقایسه و تحلیل نتایج تطبیق داده­های خطوط سیر GPS با دو الگوریتم ST-matching و IVMM برای داده­های با نرخ پایین و سپس تهیه نقشه سرعت ترافیکی از داده­های تطبیق شده است. از ویژگی­های بارز الگوریتم ST-matching در نظرگرفتن همزمان توپولوژی و ویژگی­های مکانی ویژگی زمانی است. درروش IVMM نه‌تنها از اطلاعات مکانی و زمانی بلکه از یک استراتژی رأی­مبنا  به‌منظور مدل­کردن وزن تأثیرات متقابل بین نقاطGPS بهره­گرفته­می­شود. به‌منظور تست و ارزیابی این دو الگوریتم از داده­های ناوگان حمل­ونقل عمومی اتوبوس‌رانی شهر تهران با نرخ نمونه­برداری دو دقیقه استفاده‌شده است.الگوریتم ST-matching برای تطبیق هر نقطه نمونه برداری فقط یک نقطه قبل از آن را در نظر می­گیرد و برای نقطه اول نقطه ماقبل وجود ندارد، بنابراین الگوریتم به نقطه شروع وابستگی زیادی دارد. الگوریتم IVMM با مدل‌سازی تأثیرات متقابل نقاط نمونه­برداری نتایج مؤثرتر و مستحکم­تری را ارائه می­دهد. تابع وزن فاصله نقش مهمی در الگوریتم IVMM ایفا می­کند. با افزایش مقدار پارامتر بتا در ابن تابع دقت تطبیق نقشه نیز افزایش می­یابد. دقت به­دست­آمده از روش IVMM 88 % و روش ST-matching 73% است. نتایج حاصل از این مقاله نشان می­­دهدالگوریتم IVVM درمقایسه با  ST-matching به‌طور قابل‌توجهی بهتر عمل می­نماید.هم چنین در مواجهه با گردش­های UشکلIVVM نتایج بهتری را ارائه می­دهد.

کلیدواژه‌ها


- دوباش، الف. (1393) «تطبیق مشاهدات جی. ­پی. ­اس بر نقشه به صورت برون­خط"، پایان نامه  کارشناسی­ارشد، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی­شریف، تهران.

- شهرداری تهران. معاونت وسازمان حمل­و­نقل و ترافیک (1391) «گزارش عملکرد حمل و نقل همگانی»، فصل پنجم عملکرد سامانه اتوبوسرانی، تهران.

Aung, S. S. and Naing, T. T. (2014) "Mining data for traffic detection system using GPS_Enable mobile phone in mobile cloud infrastructure ", International Journal on Cloud Computing: Services and Architecture (IJCCSA), Vol. 4, No. 3, p. 12.

- Brakatsoulas, S., Pfoser, D., Salas, R. and Wenk, C. (2005) "On map-matching vehicle tracking data", Proceedings of the 31st International Conference on Very Large Data- bases, VLDB Endowment, pp. 853-864.

- Greenfeld, J. S. (2002) "Matching GPS observations to locations on a digital map", Transportation Research Board 81st Annual Meeting, Washington D.C, p.13.

- Kim, S. and Kim, J. (2001) "Adaptive fuzzy-network-based C-measure map-matching algorithm for car navigation system", Industrial Electronics, IEEE Transactions, Vol. 48, No, 2, pp. 432-441.

- Leduc, G. (2008) "Road traffic data: Collection methods and applications", European Commission, Joint Research Center, Institute of Prospective Technological Studies, JRC 47967.

- Li, H., Kulik, L. and Ramamohanarao, K. (2015) "Robust inferences of travel paths from GPS trajectories", International Journal of Geographical Information Science. Vol. 29, No.12, pp. 2194-2222.

- Lou, Y., Zhang, Ch. and Zheng, Y. (2009) "Map-matching for low-sampling-rate GPS trajectories", Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM. p. 352.

- Marchal, F., Hackney, J. and Axhausen, K. W. (2005) "Efficient map matching of large global positioning system data sets: Tests on speed-monitoring experiment in Zürich", Transportation Research Record: Journal of the Transportation Research Board. Vol. 1, No. 1935. pp. 93-100.

- Miwa, T., Kiuchi, D. and Yamamoto, T. (2012) "Development of map matching algorithm for low frequency probe data", Transportation Research Part C: Emerging Technologies, Vol. 22, pp. 132-145.

- Newson, P. and Krumm, J. (2009) "Hidden Markov map matching through noise and sparseness", Proceedings of the 17th ACM SIGSPATIAL International Conference On Advances In Geographic Information Systems, Washington, New York, ACM. pp. 336-343. 

- Quddus, M. A., Ochieng, W. and Noland, R. B. (2007) "Current map-matching algorithms for transport applications: State-of-the art and future research directions", Transportation Research Part C: Emerging Technologies. Vol. 15, No. 5, pp. 312-328.

- Rauschert, I., Agrawal, P., Sharma, R., Fuhrmann, S., Brewer, I. and MacEachren, A. (2002) "Designing a human-centered, multimodal GIS interface to support emergency management", Proceedings of the 10th ACM international symposium on Advances in geographic information systems, McLean, Virginia, USA, ACM. pp. 119-124.   

- Syed, S. and Cannon, M. E. (2004) "Fuzzy logic-based map matching algorithm for vehicle navigation system in urban canyons", In Proceedings of the Institute of Navigation (ION) National Technical Meeting, 26-28 January, California, USA.

- Tao, S., Manolopoulos, V., Rodriguez, S. and Rusu, A. (2012) "Real-time urban traffic state estimation with A-GPS mobile phones as probes", Journal of Transportation Technologies. Vol. 2, No. 01, p. 22.

- Wang, D., Wang, Zh., Li, X. and XIAO, Zh. (2014) "A Map Matching Algorithm to Eliminate Miscalculation Based on Low-Sample-Rate Data", 3rd International Conference on Computer Science and Service System, Atlantis Press.

- Wu, D., Zhu, T., Lv, W. and Gao, X. (2007) "A heuristic map-matching algorithm by using vector-based recognition", Computing in the Global Information Technology, 2007. ICCGI 2007, International Multi-Conference on, IEEE. pp. 18-24.

- Yin, H. and Wolfson, O. (2004) "A weight-based map matching method in moving objects databases", Scientific and Statistical Database Management, 2004. Proceedings, 16th International Conference on, Washington, DC, USA, IEEE. pp. 437-438. 

- Yuan, J., Zheng, Y., Zhang, C., Xie, X. and Sun, G-Z. (2010) "An interactive-voting based map matching algorithm", Proceedings of the 2010 Eleventh International Conference on Mobile Data Management, IEEE Computer Society. pp. 43-52.

- Zeng, Z., Zhang, T., Li, Q. and Wu, Z. (2015) "Curvedness feature constrained map matching for low-frequency probe vehicle data" , International Journal of Geographical Information Science, Vol. 30. No. 4, pp. 1-31.

- Zhou, P., Jiang, S. and Li, M .(2015) "Urban Traffic Monitoring with the Help of Bus Riders", Distributed Computing Systems (ICDCS), 2015 IEEE 35th International Conference on, Columbus, OH, USA, IEEE. p. 21-30.