تحلیل قابلیت اطمینان سیستم حمل‌ونقل معدن: مطالعه مقایسه‌ای روش‌های نیمه‌پارامتری و پارامتری مخاطرات متناسب

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی استخراج مواد معدنی، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار گروه مهندسی استخراج مواد معدنی، دانشکده فنی‌ و‌ مهندسی، دانشگاه تربیت‌مدرس، تهران، ایران

3 استاد گروه مهندسی عملیات و تعمیرو نگهداری، دانشگاه صنعتی لولئو، لولئو، سوئد

چکیده

همزمان با گسترش تکنولوژی و تجهیزات از سوی صنایع معدنی به‌منظور تأمین اهداف تولید و افزایش رقابت‌پذیری در بازار، موضوع مدیریت دارایی‌های فیزیکی ازجمله ناوگان ماشین‌آلات حمل‌ونقل از اهمیت به خصوصی برخوردار گردیده است. قابلیت اطمینان یکی از شاخص‌های اصلی درزمینهٔ مدیریت دارایی‌های فیزیکی محسوب می‌شود و عمدتاً تابعی از زمان خرابی و عوامل ریسک متعددی مانند شرایط محیطی و عملیاتی نیز است. یکی از روش‌های پرکاربرد برای بررسی رابطه میان این عوامل و متغیر زمان، مدل رگرسیونی نرخ مخاطرات متناسب است که با توجه به چگونگی فرم تابع خطر پایه در آن، ضرایب رگرسیونی به دو روش پارامتری و نیمه پارامتری قابل برآورد خواهد بود. در این مقاله، داده‌های خرابی یک دستگاه دامپتراک در معدن مس سونگون با استفاده از مدل‌های نیمه پارامتری و پارامتری با تابع خطر پایه وایبل تحلیل و نتایج به‌دست‌آمده مقایسه شده‌اند. اگرچه که نتایج حاصل از دو روش تقریباً مشابه بود اما بر اساس معیار سنجش آکاییک، مدل پارامتری وایبل، از کارایی بیشتری برای توصیف قابلیت اطمینان و مخاطره ماشین موردمطالعه برخوردار است. بر اساس نتایج به‎دست‌آمده ، فاکتورهای ریسکی همچون شرایط جاده (P-value=0.08 ,[i] HR= 0.78)، مهارت اپراتور (P-value<0.001 , HR= 0.92)، فاصله حمل (P-value=0.02 , HR= 1.17) و دمای محیط (P-value=0.05 , HR= 1.02) به‌عنوان عوامل اثرگذار بر میزان مخاطره دامپتراک شناسایی شدند. این مدل در تعیین بازه‌های بازرسی تعمیرات پیشگیرانه به کار گرفته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Reliability Analysis of Mining Transportation System: A Comparative Study of Semi-Parametric and Parametric Proportional Hazard Models

نویسندگان [English]

  • Zeynab Allahkarami 1
  • Ahmad Reza Sayadi 2
  • Behazad Ghodrati 3
1 Ph.D Candidate, Department of Mining Engineering, Faculty of Engineering, University of Tarbiat Modares, Tehran, Iran
2 Associate Professor, Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
3 Professor, Division of Operation and Maintenance Engineering, Lulea˚ University of Technology, Lulea˚, Sweden
چکیده [English]

With recent technological developments in the mining industry, the issue of physical asset management has become more important. Asset management in the mining industry has a key role to achieve production goals and increase competitiveness in the market. Reliability is one of the key indicators of asset management. Reliability is a function of the failures time and various risk factors such as environmental and operational conditions. One of the most widely used methods for investigating the relationship between the risk factors and reliability is the proportional hazard regression model. The regression coefficients can be estimated using two approaches, i.e. parametric and semi-parametric. In this paper, the failure data of a dump truck in the Sungun copper mine is analyzed using both semi-parametric and parametric approaches. The results show that the obtained estimates of both approaches were close to each other, according to Akaike Information Criterion (AIC), the Weibull parametric model is more efficient than the semi-parametric model at describing the reliability and hazard rate. In addition, it is found that road condition; operator skill, ambient temperature, and haulage distance have a significant effect on the hazard rate of the dump truck. This analysis is applied to maintenance management to keep the reliability of the dump truck at an acceptable level.

کلیدواژه‌ها [English]

  • Reliability
  • Weibull Distribution
  • Cox Proportional Hazard
  • Dump Truck
  • Mining
عبدالهی، ر.، حق شناس، ح.، و ریخته گران، ر. (1398). مدل سازی همزمان تاثیر عوامل هندسی، توپوگرافی و دسترسی راه در تصادفات راه های برون شهری با عامل سازی و رگرسیون خطی تعمیم یافته (مطالعه موردی: راه های استان کرمان).
 
Akaike, H. (1974). A new look at the statistical model identification Selected Papers of Hirotugu Akaike (pp. 215-222): Springer.
 
Allahkarami, Z., & Sayadi, A. R. (2016). Maintainability Analysis and Modeling of Hydraulic System of Shavel. Paper presented at the Intrnational Conference on Industrial Engineerin and Managment, Tehran (In Persian).
 
Allahkarami, Z., Sayadi, A. R., & Lanke, A. (2016). Reliability Analysis of Motor System of Dump Truck for Maintenance Management Current Trends in Reliability, Availability, Maintainability and Safety (pp. 681-688): Springer
 
Ascher, H., & Feingold, H. (1984). Repairable systems reliability: modeling, inference, misconceptions and their causes: M. Dekker.
 
Barabadi, A., Barabady, J., & Markeset, T. (2011a). Maintainability analysis considering time-dependent and time-independent covariates. Reliability Engineering & System Safety, 96(1), 210-217.
 
Barabadi, A., Barabady, J., & Markeset, T. (2011b). A methodology for throughput capacity analysis of a production facility considering environment condition. Reliability Engineering & System Safety, 96(12), 1637-1646.
 
Basiri, M. H., & Sharifi, M. R. (2019). Behavior Analysis of Transport Fleet in Open Pit Mine With Uncertain Data. Journal of Transportation Research, 16(3 (60)), 83-93 (In Persian).
 
Bisgaard, S., & Kulahci, M. (2011). Time Series Analysis and Forecasting by Example: Wiley.
 
Choudhary, D., Tripathi, M., & Shankar, R. (2019). Reliability, availability and maintainability analysis of a cement plant: a case study. International Journal of Quality & Reliability Management, 36(3), 298-313.
 
Cox, D. R. (1972). Regression models and life tables (with discussion). Series B (Methodological). Journal of the Royal Statistical Society, 34(2), 187-220.
 
Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269-276.
 
Dhillon, B. S. (2008). Mining equipment reliability, maintainability, and safety. Berlin: Springer.
Dhudsia, V. (1997). Guidelines for equipment reliability Technical Publication: SEMATECH, Inc.
 
Ghodrati, B. (2005). Reliability and operating environment based spare parts planning. (PhD PhD diss.), Lulea, University of Technology, Lulea.
 
Ghodrati, B. (2011). Efficient Product Support—Optimum and Realistic Spare Parts Forecasting. In L. Tadj, M.-S. Ouali, S. Yacout, & D. Ait-Kadi (Eds.), Replacement Models with Minimal Repair (pp. 225-269). London: Springer.
 
Ghodrati, B., Ahmadzadeh, F., & Kumar, U. (2012). Remaining useful life estimation of mining equipment: a case study. Paper presented at the ISMPES Proceeding, New Delhi.
 
Ghodrati, B., Hoseinie, S. H., & Kumar, U. (2017). Context-driven mean residual life estimation of mining machinery. International Journal of Mining, Reclamation and Environment, 1-9.
 
Ghodrati, B., & Kumar, U. (2005). Operating environment-based spare parts forecasting and logistics: a case study. International Journal of Logistics: Research and Applications, 8(2), 95-105.
 
Hall, R. A., & Daneshmend, L. K. (2003). Reliability modelling of surface mining equipment: data gathering and analysis methodologies. International Journal of Surface Mining, Reclamation and Environment, 17(3), 139-155.
 
Ho, M., & Hodkiewicz, M. (2013). Factors That Influence Failure Behaviour and Remaining Useful Life of Mining Equipment Components. Advances in Mechanical Engineering, 5, 9.
Hoseinie, S. H., Ataei, M., Khalokakaie, R., Ghodrati, B., & Kumar, U. (2012). Reliability analysis of drum shearer machine at mechanized longwall mines. Journal of Quality in Maintenance Engineering, 18(1), 98-119.
 
Hougaard, P. (2000). Analysis of Multivariate Survival Data. New York: Springer.
 
Kleinbaum, D. G., & Klein, M. (2012). Survival Analysis: A Self-Learning Text, Third Edition. New York: Springer.
 
Kumar, D., Klefsjö, B., & Kumar, U. (1992). Reliability analysis of power transmission cables of electric mine loaders using the proportional hazards model. Reliability Engineering & System Safety, 37(3), 217-222.
 
Kumar, U. (1990). Reliability analysis of load-haul-dump machines. (PhD), Luleå University of Technologyy, Luleå.
 
Kumar, U., Klefsjö, B., & Granholm, S. (1989). Reliability investigation for a fleet of load haul dump machines in a Swedish mine. Reliability Engineering & System Safety, 26(4), 341-361.
 
Li, J., & Ma, S. (2013). Survival analysis in medicine and genetics: CRC Press.
 
Moniri-Morad, A., Pourgol-Mohammad, M., Aghababaeia, H., & Sattarvand, J. (2018). Reliability-based regression model for complex systems considering environmental uncertainties. Paper presented at the Probabilistic Safety Assessment and Management (PSAM 14), Los Angeles, CA.
 
Nouri Qara Hasanlou, A., Ataei, M., Khalokakaie, R., Fatoorachi, S., & Barabady, R. (2019). Operating Environment Based Reliability Analysis of Mining EquipmentCase Study: Molybdenum-Copper Mine (Sungun Copper Mine). Journal of Analytical and Numerical Methods In Mining Engineering, 9(18), 129-141.
 
Nouri Qarahasanlou, A., Ataei, M., Khalokakaie, R., Ghodrati, B., & Jafarei, R. (2016). Tire demand planning based on reliability and operating environment. International Journal of Mining and Geo-Engineering, 50(2), 239-248.
 
Nouri Qarahasanlou, A., Barabadi, A., Ataei, M., & Einian, V. (2019). Spare part requirement prediction under different maintenance strategies. International Journal of Mining, Reclamation and Environment, 33(3), 169-182.
 
Oakes, D. (1983). Comparison of models for survival data. Statistics in Medicine, 2(2), 305-311. doi:10.1002/sim.4780020227
 
Qarahasanlou, A. N., Khalokakaie, R., Ataei, M., & Ghodrati, B. (2017). Operating Environment-Based Availability Importance Measures for Mining Equipment (Case Study: Sungun Copper Mine). Journal of Failure Analysis and Prevention, 17(1), 56-67.
 
Vagenas, N., Runciman, N., & Clément, S. R. (1997). A methodology for maintenance analysis of mining equipment. International Journal o/Surface Mining, Reclamation and Environment, 11(1), 33-40.
 
Wienke, A. (2011). Frailty models in survival analysis: CRC Press.
 
Xu, R., Vaida, F., & Harrington, D. P. (2009). Using profile likelihood for semiparametric model selection with application to proportional hazards mixed models. Statistica Sinica, 19(2), 819-842.